Suppr超能文献

低强度超声可直接激发听皮层神经元。

Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons.

机构信息

Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.

出版信息

Neural Plast. 2021 Apr 4;2021:8855055. doi: 10.1155/2021/8855055. eCollection 2021.

Abstract

Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.

摘要

人工耳蜗植入是儿童和成人重度和极重度听力损失的首选治疗方法。然而,患有耳蜗畸形或耳蜗神经缺陷的耳聋患者不符合人工耳蜗植入的条件。同时,空间选择性有限和开颅手术的高风险限制了听觉脑干植入的广泛应用。需要一种安全有效的神经元刺激的非侵入性替代策略来解决这个问题。由于其在神经调节方面优于电刺激,低强度超声(US)被认为是在中枢听觉系统中诱发神经活动的安全模式。尽管低强度 US 的神经调节能力已在人类初级体感皮层和初级视觉皮层中得到证实,但低强度 US 是否可以直接激活听觉皮层神经元仍存在争议。为了阐明对听觉神经元的直接影响,在本研究中,我们采用低强度 US 刺激体外培养的听觉皮层神经元。我们的数据表明,低频(0.8 MHz)和高频(>27 MHz)US 刺激均可在培养神经元中引起内向电流和动作电位。c-Fos 染色结果表明,低强度 US 对大多数神经元的刺激效果高效。我们的研究表明,低强度 US 可以直接兴奋听觉皮层神经元,这意味着 US 诱导的神经调节可能是激活耳聋患者听觉皮层的一种潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0b/8041518/ad50d7b66547/NP2021-8855055.001.jpg

相似文献

1
Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons.
Neural Plast. 2021 Apr 4;2021:8855055. doi: 10.1155/2021/8855055. eCollection 2021.
2
Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway.
Neuron. 2018 Jun 6;98(5):1020-1030.e4. doi: 10.1016/j.neuron.2018.04.036. Epub 2018 May 24.
4
Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear.
Brain Topogr. 2011 Oct;24(3-4):204-19. doi: 10.1007/s10548-011-0181-2. Epub 2011 Apr 11.
10
Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children.
Int J Psychophysiol. 2015 Feb;95(2):135-44. doi: 10.1016/j.ijpsycho.2014.04.007. Epub 2014 Apr 26.

引用本文的文献

1
Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation.
Adv Sci (Weinh). 2024 Dec;11(48):e2407373. doi: 10.1002/advs.202407373. Epub 2024 Nov 3.
2
Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications.
Biophys Rev (Melville). 2023 Apr 21;4(2):021301. doi: 10.1063/5.0127122. eCollection 2023 Jun.
3
Modeling ultrasound modulation of neural function in a single cell.
Heliyon. 2023 Nov 21;9(12):e22522. doi: 10.1016/j.heliyon.2023.e22522. eCollection 2023 Dec.
4
Advanced rehabilitation in ischaemic stroke research.
Stroke Vasc Neurol. 2024 Aug 27;9(4):328-343. doi: 10.1136/svn-2022-002285.
5
Non-Invasive Hybrid Ultrasound Stimulation of Visual Cortex In Vivo.
Bioengineering (Basel). 2023 May 10;10(5):577. doi: 10.3390/bioengineering10050577.

本文引用的文献

2
AAV-ie enables safe and efficient gene transfer to inner ear cells.
Nat Commun. 2019 Aug 19;10(1):3733. doi: 10.1038/s41467-019-11687-8.
3
Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety.
Ultrasound Med Biol. 2019 Jul;45(7):1509-1536. doi: 10.1016/j.ultrasmedbio.2018.12.015. Epub 2019 May 18.
4
Critical role of spectrin in hearing development and deafness.
Sci Adv. 2019 Apr 17;5(4):eaav7803. doi: 10.1126/sciadv.aav7803. eCollection 2019 Apr.
5
Auditory Brainstem Implantation: An Overview.
J Neurol Surg B Skull Base. 2019 Apr;80(2):203-208. doi: 10.1055/s-0039-1679891. Epub 2019 Feb 14.
6
Cochlear Implantation: An Overview.
J Neurol Surg B Skull Base. 2019 Apr;80(2):169-177. doi: 10.1055/s-0038-1669411. Epub 2018 Sep 6.
7
Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation.
Brain Stimul. 2019 Jul-Aug;12(4):901-910. doi: 10.1016/j.brs.2019.03.005. Epub 2019 Mar 6.
8
The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells.
Neuropharmacology. 2019 Jan;144:43-57. doi: 10.1016/j.neuropharm.2018.10.021. Epub 2018 Oct 15.
9
Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice.
Front Mol Neurosci. 2018 Oct 2;11:362. doi: 10.3389/fnmol.2018.00362. eCollection 2018.
10
Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications.
Brain Stimul. 2018 Nov-Dec;11(6):1209-1217. doi: 10.1016/j.brs.2018.08.013. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验