Suppr超能文献

增强 X 射线吸收光谱中无序分析:深度学习神经网络在 T-jump-X 射线探测实验中的应用。

Enhancing the analysis of disorder in X-ray absorption spectra: application of deep neural networks to T-jump-X-ray probe experiments.

机构信息

Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

出版信息

Phys Chem Chem Phys. 2021 Apr 22;23(15):9259-9269. doi: 10.1039/d0cp06244h.

Abstract

Many chemical and biological reactions, including ligand exchange processes, require thermal energy for the reactants to overcome a transition barrier and reach the product state. Temperature-jump (T-jump) spectroscopy uses a near-infrared (NIR) pulse to rapidly heat a sample, offering an approach for triggering these processes and directly accessing thermally-activated pathways. However, thermal activation inherently increases the disorder of the system under study and, as a consequence, can make quantitative interpretations of structural changes challenging. In this Article, we optimise a deep neural network (DNN) for the instantaneous prediction of Co K-edge X-ray absorption near-edge structure (XANES) spectra. We apply our DNN to analyse T-jump pump/X-ray probe data pertaining to the ligand exchange processes and solvation dynamics of Co2+ in chlorinated aqueous solution. Our analysis is greatly facilitated by machine learning, as our DNN is able to predict quickly and cost-effectively the XANES spectra of thousands of geometric configurations sampled from ab initio molecular dynamics (MD) using nothing more than the local geometric environment around the X-ray absorption site. We identify directly the structural changes following the T-jump, which are dominated by sample heating and a commensurate increase in the Debye-Waller factor.

摘要

许多化学和生物反应,包括配体交换过程,需要热能使反应物克服过渡势垒并达到产物状态。温度跃变(T-jump)光谱学使用近红外(NIR)脉冲快速加热样品,提供了一种触发这些过程并直接进入热激活途径的方法。然而,热激活本质上会增加所研究系统的无序性,因此,对结构变化进行定量解释具有挑战性。在本文中,我们针对 Co K 边 X 射线吸收近边结构(XANES)光谱的瞬时预测优化了深度神经网络(DNN)。我们将我们的 DNN 应用于分析涉及配体交换过程和 Co2+在氯化水溶液中溶剂化动力学的 T-jump 泵/X 射线探测数据。通过机器学习,我们的分析得到了极大的简化,因为我们的 DNN 仅使用 X 射线吸收位点周围的局部几何环境,就能够快速、经济有效地预测从从头分子动力学(MD)中采样的数千个几何构型的 XANES 光谱。我们直接识别了 T-jump 后的结构变化,这些变化主要由样品加热和德拜-沃勒因子的相应增加引起。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验