Suppr超能文献

一种用于快速预测 X 射线吸收光谱的深度神经网络。

A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra.

机构信息

Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, U.K.

Department of Chemistry, College of Science, Jazan University, Jazan, Saudi Arabia.

出版信息

J Phys Chem A. 2020 May 28;124(21):4263-4270. doi: 10.1021/acs.jpca.0c03723. Epub 2020 May 18.

Abstract

X-ray spectroscopy delivers strong impact across the physical and biological sciences by providing end users with highly detailed information about the electronic and geometric structure of matter. To decode this information in challenging cases, , catalysts, batteries, and temporally evolving systems, advanced theoretical calculations are necessary. The complexity and resource requirements often render these out of reach for end users, and therefore, the data are often not interpreted exhaustively, leaving a wealth of valuable information unexploited. In this paper, we introduce supervised machine learning of X-ray absorption spectra through the development of a deep neural network (DNN) that is able to estimate Fe K-edge X-ray absorption near-edge structure spectra in less than a second with no input beyond geometric information about the local environment of the absorption site. We predict peak positions with sub-eV accuracy and peak intensities with errors over an order of magnitude smaller than the spectral variations that the model is engineered to capture. The performance of the DNN is promising, as illustrated by its application to the structural refinement of tris(bipyridine)iron(II) and nitrosylmyoglobin, but also highlights areas on which future developments should focus.

摘要

X 射线光谱学通过为最终用户提供有关物质的电子和几何结构的高度详细信息,在物理和生物科学领域产生了重大影响。为了解码具有挑战性的情况下(例如催化剂、电池和随时间演变的系统)的信息,需要先进的理论计算。由于复杂性和资源要求,这些计算往往超出了最终用户的能力范围,因此数据通常没有得到充分解释,从而浪费了大量有价值的信息。在本文中,我们通过开发一种能够在不到一秒的时间内估算 Fe K 边 X 射线吸收近边结构光谱的深度神经网络 (DNN),引入了 X 射线吸收光谱的监督机器学习。该 DNN 仅需要有关吸收位置局部环境的几何信息作为输入,就能以亚电子伏特的精度预测峰位置,并以比模型设计要捕捉的光谱变化小一个数量级的误差预测峰强度。DNN 的性能很有前景,如其在三(联吡啶)铁(II)和亚硝酰基血红蛋白结构精修中的应用所证明的那样,但也突出了未来发展应关注的领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验