Vasilyev Oleg A, Marino Emanuele, Kluft Bas B, Schall Peter, Kondrat Svyatoslav
Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, D-70569 Stuttgart, Germany.
Nanoscale. 2021 Apr 7;13(13):6475-6488. doi: 10.1039/d0nr09076j. Epub 2021 Mar 23.
Fine-tuning the interactions between particles can allow one to steer their collective behaviour and structure. A convenient way to achieve this is to use solvent criticality to control attraction, via critical Casimir forces, and to control repulsion via the Debye screening of electrostatic interactions. Herein, we develop a multiscale simulation framework and a method for controlled deposition of quantum dots to investigate how these interactions affect the structure of charged nanoparticles deposited on a substrate, altogether immersed in a binary liquid mixture intermixed with salt. We consider nanoparticles and substrates favouring the same component of the mixture and find that the critical Casimir interactions between the nanoparticles become drastically reduced at the substrate. In particular, the interactions can become a few kT weaker and their decay length a few orders of magnitude smaller than in the bulk. At off-critical compositions, the decay length increases upon approaching criticality, as expected, but the interaction strength decreases. With molecular dynamics simulations and experiments, we reveal that the nanoparticles can self-assemble into crystalline clusters which form superstructures resembling cluster fluids and spinodal morphology. The simulations additionally predict the formation of fractal-like nanoparticle gels and bicontinuous phases. Our results demonstrate that charged nanoparticles in a salty binary liquid mixture provide exciting opportunities to study the formation of complex structures experimentally and theoretically, which may lead to applications in optoelectronics and photonics.
微调粒子之间的相互作用可以使人们操控它们的集体行为和结构。实现这一点的一种便捷方法是利用溶剂临界性,通过临界卡西米尔力来控制吸引力,并通过静电相互作用的德拜屏蔽来控制排斥力。在此,我们开发了一个多尺度模拟框架和一种用于量子点可控沉积的方法,以研究这些相互作用如何影响沉积在基底上的带电纳米粒子的结构,这些粒子完全浸没在与盐混合的二元液体混合物中。我们考虑纳米粒子和基底都偏好混合物的同一组分,并发现纳米粒子之间的临界卡西米尔相互作用在基底处会大幅减弱。特别是,这种相互作用可能会比在体相中弱几个kT,其衰减长度比在体相中小几个数量级。在非临界组成时,正如预期的那样,衰减长度在接近临界时会增加,但相互作用强度会降低。通过分子动力学模拟和实验,我们揭示纳米粒子可以自组装成晶体簇,这些晶体簇形成类似簇状流体和旋节线形态的超结构。模拟还预测了分形状纳米粒子凝胶和双连续相的形成。我们的结果表明,在含盐二元液体混合物中的带电纳米粒子为从实验和理论上研究复杂结构的形成提供了令人兴奋的机会,这可能会导致在光电子学和光子学中的应用。