Jonas H J, Stuij S G, Schall P, Bolhuis P G
van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
Institute of Physics, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
J Chem Phys. 2021 Jul 21;155(3):034902. doi: 10.1063/5.0055012.
Synthetic colloidal patchy particles immersed in a binary liquid mixture can self-assemble via critical Casimir interactions into various superstructures, such as chains and networks. Up to now, there are no quantitatively accurate potential models that can simulate and predict this experimentally observed behavior precisely. Here, we develop a protocol to establish such a model based on a combination of theoretical Casimir potentials and angular switching functions. Using Monte Carlo simulations, we optimize several material-specific parameters in the model to match the experimental chain length distribution and persistence length. Our approach gives a systematic way to obtain accurate potentials for critical Casimir induced patchy particle interactions and can be used in large-scale simulations.
浸没在二元液体混合物中的合成胶体斑点颗粒可以通过临界卡西米尔相互作用自组装成各种超结构,如链状和网络状。到目前为止,还没有能够精确模拟和预测这种实验观察到的行为的定量准确的势模型。在这里,我们开发了一种基于理论卡西米尔势和角切换函数相结合的协议来建立这样一个模型。通过蒙特卡罗模拟,我们在模型中优化了几个特定材料的参数,以匹配实验链长分布和持久长度。我们的方法为获得临界卡西米尔诱导的斑点颗粒相互作用的精确势提供了一种系统的方法,并且可用于大规模模拟。