Wang Gan, Nowakowski Piotr, Farahmand Bafi Nima, Midtvedt Benjamin, Schmidt Falko, Callegari Agnese, Verre Ruggero, Käll Mikael, Dietrich S, Kondrat Svyatoslav, Volpe Giovanni
Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden.
Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, D-70569, Stuttgart, Germany.
Nat Commun. 2024 Jun 14;15(1):5086. doi: 10.1038/s41467-024-49220-1.
The manipulation of microscopic objects requires precise and controllable forces and torques. Recent advances have led to the use of critical Casimir forces as a powerful tool, which can be finely tuned through the temperature of the environment and the chemical properties of the involved objects. For example, these forces have been used to self-organize ensembles of particles and to counteract stiction caused by Casimir-Liftshitz forces. However, until now, the potential of critical Casimir torques has been largely unexplored. Here, we demonstrate that critical Casimir torques can efficiently control the alignment of microscopic objects on nanopatterned substrates. We show experimentally and corroborate with theoretical calculations and Monte Carlo simulations that circular patterns on a substrate can stabilize the position and orientation of microscopic disks. By making the patterns elliptical, such microdisks can be subject to a torque which flips them upright while simultaneously allowing for more accurate control of the microdisk position. More complex patterns can selectively trap 2D-chiral particles and generate particle motion similar to non-equilibrium Brownian ratchets. These findings provide new opportunities for nanotechnological applications requiring precise positioning and orientation of microscopic objects.
对微观物体的操控需要精确且可控的力和扭矩。最近的进展使得临界卡西米尔力成为一种强大的工具,它可以通过环境温度和相关物体的化学性质进行精细调节。例如,这些力已被用于使粒子集合自组织,并抵消卡西米尔 - 利夫希茨力引起的静摩擦力。然而,到目前为止,临界卡西米尔扭矩的潜力在很大程度上尚未得到探索。在这里,我们证明临界卡西米尔扭矩可以有效地控制纳米图案化衬底上微观物体的排列。我们通过实验表明,并通过理论计算和蒙特卡罗模拟证实,衬底上的圆形图案可以稳定微观圆盘的位置和方向。通过使图案呈椭圆形,这样的微盘会受到一个扭矩,使其翻转直立,同时允许对微盘位置进行更精确的控制。更复杂的图案可以选择性地捕获二维手性粒子,并产生类似于非平衡布朗棘轮的粒子运动。这些发现为需要对微观物体进行精确定位和定向的纳米技术应用提供了新的机会。