Suppr超能文献

新型冠状病毒 SARS-CoV-2 的重组和适应性进化分析新框架。

New framework for recombination and adaptive evolution analysis with application to the novel coronavirus SARS-CoV-2.

机构信息

School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.

School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab107.

Abstract

The 2019 novel coronavirus (SARS-CoV-2) has spread rapidly worldwide and was declared a pandemic by the WHO in March 2020. The evolution of SARS-CoV-2, either in its natural reservoir or in the human population, is still unclear, but this knowledge is essential for effective prevention and control. We propose a new framework to systematically identify recombination events, excluding those due to noise and convergent evolution. We found that several recombination events occurred for SARS-CoV-2 before its transfer to humans, including a more recent recombination event in the receptor-binding domain. We also constructed a probabilistic mutation network to explore the diversity and evolution of SARS-CoV-2 after human infection. Clustering results show that the novel coronavirus has diverged into several clusters that cocirculate over time in various regions and that several mutations across the genome are fixed during transmission throughout the human population, including D614G in the S gene and two accompanied mutations in ORF1ab. Together, these findings suggest that SARS-CoV-2 experienced a complicated evolution process in the natural environment and point to its continuous adaptation to humans. The new framework proposed in this study can help our understanding of and response to other emerging pathogens.

摘要

2019 年新型冠状病毒(SARS-CoV-2)在全球迅速传播,并于 2020 年 3 月被世界卫生组织宣布为大流行。SARS-CoV-2 的进化,无论是在其自然宿主还是在人类群体中,仍不清楚,但这一知识对于有效预防和控制至关重要。我们提出了一个新的框架,系统地识别重组事件,排除由于噪声和趋同进化引起的重组事件。我们发现,SARS-CoV-2 在转移到人类之前发生了几次重组事件,包括受体结合域中的一次更近的重组事件。我们还构建了一个概率突变网络,以探索人类感染后 SARS-CoV-2 的多样性和进化。聚类结果表明,新型冠状病毒已经在不同地区的时间内分化成几个集群,并且在整个人群的传播过程中,基因组上的几个突变被固定下来,包括 S 基因中的 D614G 以及 ORF1ab 中的两个伴随突变。总之,这些发现表明,SARS-CoV-2 在自然环境中经历了一个复杂的进化过程,并指向其对人类的不断适应。本研究提出的新框架有助于我们理解和应对其他新出现的病原体。

相似文献

5
Ongoing global and regional adaptive evolution of SARS-CoV-2.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2104241118. Epub 2021 Jul 2.
6
Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2.
Sci Rep. 2020 Dec 10;10(1):21617. doi: 10.1038/s41598-020-78703-6.
7
Untangling the Evolution of the Receptor-Binding Motif of SARS-CoV-2.
J Mol Evol. 2024 Jun;92(3):329-337. doi: 10.1007/s00239-024-10175-y. Epub 2024 May 22.
10
On the origin and evolution of SARS-CoV-2.
Exp Mol Med. 2021 Apr;53(4):537-547. doi: 10.1038/s12276-021-00604-z. Epub 2021 Apr 16.

引用本文的文献

2
Detecting genetic gain and loss events in terms of protein domain: Method and implementation.
Heliyon. 2024 May 31;10(11):e32103. doi: 10.1016/j.heliyon.2024.e32103. eCollection 2024 Jun 15.
3
Variation in synonymous evolutionary rates in the SARS-CoV-2 genome.
Front Microbiol. 2023 Mar 9;14:1136386. doi: 10.3389/fmicb.2023.1136386. eCollection 2023.
4
A Standardized Framework for Better Understanding of Phenotypic Differences within Bacterial Phyla Based on Protein Domain.
J Bacteriol. 2022 Jun 21;204(6):e0014122. doi: 10.1128/jb.00141-22. Epub 2022 Jun 2.
5
Molecular Characterization of Infectious Bronchitis Virus Strain HH06 Isolated in a Poultry Farm in Northeastern China.
Front Vet Sci. 2021 Dec 16;8:794228. doi: 10.3389/fvets.2021.794228. eCollection 2021.
6

本文引用的文献

1
Recombination in large RNA viruses: Coronaviruses.
Semin Virol. 1996 Dec;7(6):381-388. doi: 10.1006/smvy.1996.0046. Epub 2002 May 25.
2
On the origin and continuing evolution of SARS-CoV-2.
Natl Sci Rev. 2020 Jun;7(6):1012-1023. doi: 10.1093/nsr/nwaa036. Epub 2020 Mar 3.
3
A Mutation Network Method for Transmission Analysis of Human Influenza H3N2.
Viruses. 2020 Oct 3;12(10):1125. doi: 10.3390/v12101125.
4
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong.
Nat Med. 2020 Nov;26(11):1714-1719. doi: 10.1038/s41591-020-1092-0. Epub 2020 Sep 17.
5
Emergence of SARS-CoV-2 through recombination and strong purifying selection.
Sci Adv. 2020 Jul 1;6(27). doi: 10.1126/sciadv.abb9153. Print 2020 Jul.
6
The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity.
Cell. 2020 Sep 3;182(5):1284-1294.e9. doi: 10.1016/j.cell.2020.07.012. Epub 2020 Jul 17.
7
Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic.
Nat Microbiol. 2020 Nov;5(11):1408-1417. doi: 10.1038/s41564-020-0771-4. Epub 2020 Jul 28.
8
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
Cell. 2020 Aug 20;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3.
9
A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein.
Curr Biol. 2020 Jun 8;30(11):2196-2203.e3. doi: 10.1016/j.cub.2020.05.023. Epub 2020 May 11.
10
SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells.
Sci China Life Sci. 2020 Sep;63(9):1413-1416. doi: 10.1007/s11427-020-1692-1. Epub 2020 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验