Suppr超能文献

GSDet: Object Detection in Aerial Images Based on Scale Reasoning.

作者信息

Li Wei, Wei Wei, Zhang Lei

出版信息

IEEE Trans Image Process. 2021;30:4599-4609. doi: 10.1109/TIP.2021.3073319. Epub 2021 Apr 29.

Abstract

Variations in both object scale and style under different capture scenes (e.g., downtown, port) greatly enhance the difficulties associated with object detection in aerial images. Although ground sample distance (GSD) provides an apparent clue to address this issue, no existing object detection methods have considered utilizing this useful prior knowledge. In this paper, we propose the first object detection network to incorporate GSD into the object detection modeling process. More specifically, built on a two-stage detection framework, we adopt a GSD identification subnet converting the GSD regression into a probability estimation process, then combine the GSD information with the sizes of Regions of Interest (RoIs) to determine the physical size of objects. The estimated physical size can provide a powerful prior for detection by reweighting the weights from the classification layer of each category to produce RoI-wise enhanced features. Furthermore, to improve the discriminability among categories of similar size and make the inference process more adaptive, the scene information is also considered. The pipeline is flexible enough to be stacked on any two-stage modern detection framework. The improvement over the existing two-stage object detection methods on the DOTA dataset demonstrates the effectiveness of our method.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验