Suppr超能文献

轻量级特征提取与增强网络在遥感图像超分辨率中的应用

A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images.

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.

Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3906. doi: 10.3390/s23083906.

Abstract

Super-resolution (SR) images based on deep networks have achieved great accomplishments in recent years, but the large number of parameters that come with them are not conducive to use in equipment with limited capabilities in real life. Therefore, we propose a lightweight feature distillation and enhancement network (FDENet). Specifically, we propose a feature distillation and enhancement block (FDEB), which contains two parts: a feature-distillation part and a feature-enhancement part. Firstly, the feature-distillation part uses the stepwise distillation operation to extract the layered feature, and here we use the proposed stepwise fusion mechanism (SFM) to fuse the retained features after stepwise distillation to promote information flow and use the shallow pixel attention block (SRAB) to extract information. Secondly, we use the feature-enhancement part to enhance the extracted features. The feature-enhancement part is composed of well-designed bilateral bands. The upper sideband is used to enhance the features, and the lower sideband is used to extract the complex background information of remote sensing images. Finally, we fuse the features of the upper and lower sidebands to enhance the expression ability of the features. A large number of experiments show that the proposed FDENet both produces less parameters and performs better than most existing advanced models.

摘要

基于深度网络的超分辨率 (SR) 图像近年来取得了巨大的成就,但它们所具有的大量参数不利于在实际生活中功能有限的设备中使用。因此,我们提出了一种轻量级的特征提取和增强网络 (FDENet)。具体来说,我们提出了一种特征提取和增强模块 (FDEB),它包含两部分:特征提取部分和特征增强部分。首先,特征提取部分使用逐步提取操作来提取分层特征,这里我们使用我们提出的逐步融合机制 (SFM) 来融合逐步提取后保留的特征,以促进信息流并使用浅层像素注意力块 (SRAB) 来提取信息。其次,我们使用特征增强部分来增强提取的特征。特征增强部分由精心设计的双边带组成。上侧带用于增强特征,下侧带用于提取遥感图像的复杂背景信息。最后,我们融合上下侧带的特征以增强特征的表达能力。大量实验表明,所提出的 FDENet 不仅参数较少,而且性能优于大多数现有的先进模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验