Suppr超能文献

深内含子空间中的无注释剪接调控元件。

Unannotated splicing regulatory elements in deep intron space.

机构信息

Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA.

出版信息

Wiley Interdiscip Rev RNA. 2021 Sep;12(5):e1656. doi: 10.1002/wrna.1656. Epub 2021 Apr 22.

Abstract

Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.

摘要

深内含子空间中蕴藏着多种多样的剪接调控元件,这些元件与更为人熟知的外显子近端元件协同作用,以确保特定组织和特定发育阶段的前体 mRNA 得到正确的加工。许多深内含子元件在脊椎动物进化过程中高度保守,但在人类基因组中却未得到很好的注释。递归剪接外显子(RS-exons)和内含子促进长内含子中非规范的多步重剪接途径,涉及到在 RNA-seq 数据集中严重代表性不足的瞬态中间结构。诱饵剪接位点和诱饵外显子在远处作用,抑制注释剪接位点的剪接催化,从而产生外显子跳过和内含子保留等功能后果。RNA:RNA 桥可以使内含子内或跨内含子的远距离序列并置,以激活深内含子剪接增强子和沉默子,环出要跳过的外显子,或选择一组相互排斥的外显子中的一个成员。同样,转录结合 RNA 结合蛋白(RBPs)之间的相互作用介导的蛋白质桥可以调节剪接结果。这些功能中的任何一种深内含子元件的实验破坏都可能导致正常剪接的破坏,这强烈表明深内含子元件的自然突变也可能以同样的方式导致人类疾病。理解非规范剪接途径和发现深内含子调控信号,其中许多信号从注释的剪接连接点映射数百到数千个核苷酸,对于研究选择性剪接机制的基础科学家具有重要的学术意义。希望,这方面的知识以及对深内含子序列的进一步分析,也将具有重要的医学应用价值,因为对深内含子突变的更好解释可能揭示新的疾病机制,并提出新的治疗方法。本文归类于:RNA 加工>剪接调控/选择性剪接。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验