Tomassoni-Ardori Francesco, Ellen Palko Mary, Galloux Melissa, Tessarollo Lino
Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
Independent bioinformatician, Marseille, France.
bioRxiv. 2025 Mar 18:2024.08.19.608686. doi: 10.1101/2024.08.19.608686.
The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear. Here we show that deep intronic, tightly clustered RbFox1 motifs cooperate and are important regulators of alternative exons splicing. Bioinformatic analysis revealed that (U)GCAUG-clusters are widely present in both mouse and human genes and are embedded in sequences binding the large assembly of splicing regulators (LASR). Integrative data analysis from eCLIP and RNAseq experiments showed a global increase in RNA isoform modulation of genes with Rbfox1 eCLIP-peaks associated with these clusters. Experimentally, by employing recombineering mutagenesis in a bacterial artificial chromosome containing the NTrk2 mouse region subjected to alternative splicing we showed that tightly clustered (U)GCAUG motifs in the middle of 50 Kb introns are necessary for RbFox1 regulation of NTrk2 gene isoforms expression. Moreover, clustered (U)GCAUG-motifs promote the recruitment of RbFox1 proteins to form a Rbfox1/LASR complex required for splicing. These data suggest that clustered, distal intronic Rbfox-binding motifs embedded in LASR binding sequences are important determinants of RbFox1 function in the mammalian genome and provide a target for identification of pathogenic mutations.
RbFox RNA 结合蛋白调控着与哺乳动物发育和器官功能相关基因的可变剪接。它们以高亲和力结合 RNA 序列 (U)GCAUG,但也以浓度依赖的方式结合非经典二级基序。然而,在基因组中广泛存在的 RbFox 基序的层级需求仍不清楚。在此,我们表明深度内含子、紧密成簇的 RbFox1 基序协同作用,是可变外显子剪接的重要调节因子。生物信息学分析显示,(U)GCAUG 簇广泛存在于小鼠和人类基因中,并嵌入与大量剪接调节因子组装体(LASR)结合的序列中。来自 eCLIP 和 RNAseq 实验的综合数据分析表明,与这些簇相关的具有 Rbfox1 eCLIP 峰的基因的 RNA 异构体调控在整体上有所增加。在实验中,通过在含有经历可变剪接的 NTrk2 小鼠区域的细菌人工染色体中采用重组工程诱变,我们表明 50 Kb 内含子中部紧密成簇的 (U)GCAUG 基序对于 RbFox1 调节 NTrk2 基因异构体表达是必需的。此外,成簇的 (U)GCAUG 基序促进 RbFox1 蛋白的募集,以形成剪接所需的 Rbfox1/LASR 复合物。这些数据表明,嵌入 LASR 结合序列中的成簇的、远端内含子 Rbfox 结合基序是 RbFox1 在哺乳动物基因组中功能的重要决定因素,并为鉴定致病突变提供了一个靶点。