JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA.
Biophysics Department, Technical University of Munich, Garching, Germany.
J Chem Phys. 2021 Apr 21;154(15):155101. doi: 10.1063/5.0045492.
The cell is an extremely crowded environment, which is known to have a profound impact on the thermodynamics, functionality, and conformational stability of biomolecules. Speculations from recent theoretical molecular dynamics studies suggest an intriguing size dependence to such purely entropic crowding effects, whereby small molecular weight crowders under constant enthalpy conditions are more effective than larger crowders on a per volume basis. If experimentally confirmed, this would be profoundly significant, as the cellular cytoplasm is also quite concentrated in smaller molecular weight solutes such as inorganic ions, amino acids, and various metabolites. The challenge is to perform such studies isolating entropic effects under isoenthalpic conditions. In this work, we first present results from single-molecule FRET spectroscopy (smFRET) on the molecular size-dependent crowding stabilization of a simple RNA tertiary motif (the GAAA tetraloop-tetraloop receptor), indeed providing evidence in support of the surprising notion in the crowding literature that "smaller is better." Specifically, systematic smFRET studies as a function of crowder solute size reveal that smaller molecules both significantly increase the RNA tertiary folding rate and, yet, simultaneously decrease the unfolding rate, predicting strongly size-dependent stabilization of RNA tertiary structures under crowded cellular conditions. The size dependence of these effects has been explored via systematic variation of crowder size over a broad range of molecular weights (90-3000 amu). Furthermore, corresponding temperature dependent studies indicate the systematic changes in the folding equilibrium to be predominantly entropic in origin, i.e., consistent with a fundamental picture of entropic molecular crowding without additional enthalpic interactions. Most importantly, all trends in the single-molecule crowding data can be quantitatively recapitulated by a simple analytic depletion force model, whereby excluded volume interactions represent the major thermodynamic driving force toward folding. Our study, thus, not only provides experimental evidence and theoretical support for small molecule crowding but also predicts further enhancement of crowding effects for even smaller molecules on a per volume basis.
细胞是一个极其拥挤的环境,已知其对生物分子的热力学、功能和构象稳定性有深远的影响。最近的理论分子动力学研究的推测表明,这种纯粹的熵拥挤效应具有令人着迷的尺寸依赖性,即在恒焓条件下,小分子质量的拥挤剂在单位体积上比大分子质量的拥挤剂更有效。如果实验得到证实,这将是非常重要的,因为细胞细胞质也非常集中在小分子质量的溶质中,如无机离子、氨基酸和各种代谢物。挑战在于在等焓条件下进行这种研究以分离熵效应。在这项工作中,我们首先介绍了单分子荧光共振能量转移(smFRET)对简单 RNA 三级结构分子大小依赖性拥挤稳定的研究结果,这确实为拥挤文献中令人惊讶的观点提供了证据,即“越小越好”。具体来说,系统的 smFRET 研究作为 crowder 溶质尺寸的函数,揭示了小分子不仅显著增加了 RNA 三级折叠速率,而且同时降低了 RNA 三级结构的解折叠速率,这表明在拥挤的细胞条件下,RNA 三级结构具有强烈的尺寸依赖性稳定性。通过在广泛的分子量范围内(90-3000amu)系统地改变 crowder 尺寸,研究了这些效应的尺寸依赖性。此外,相应的温度依赖性研究表明,折叠平衡的系统变化主要源于熵,即与没有额外焓相互作用的熵分子拥挤的基本图像一致。最重要的是,单分子拥挤数据中的所有趋势都可以通过一个简单的分析耗散力模型定量地再现,其中排斥体积相互作用是折叠的主要热力学驱动力。因此,我们的研究不仅为小分子拥挤提供了实验证据和理论支持,而且还预测了在单位体积上甚至更小的分子的拥挤效应的进一步增强。