Suppr超能文献

疼痛中的杏仁核生理学

Amygdala physiology in pain.

作者信息

Neugebauer Volker

机构信息

Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center | School of Medicine, 3601 4th Street | Mail Stop 6592, Lubbock, Texas 79430-6592.

出版信息

Handb Behav Neurosci. 2020;26:101-113. doi: 10.1016/b978-0-12-815134-1.00004-0. Epub 2020 Mar 31.

Abstract

The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.

摘要

杏仁核已成为疼痛及疼痛调节情感维度的一个重要脑区。杏仁核通过直接和间接途径接收伤害性信息。这些兴奋性输入汇聚于杏仁核输出区域(中央核),并可受到作为(前额叶)皮质调节靶点的抑制性元件的调制。例如,杏仁核内插细胞群中的抑制性神经元投射至中央核以发挥门控功能,中央核内的抑制性(蛋白激酶Cδ)中间神经元亦是如此。在疼痛状态下,由于兴奋 - 抑制失衡,输出神经元会发生突触可塑性,从而引发疼痛样行为和疼痛持续。杏仁核中与疼痛相关的神经可塑性机制包括经典递质、神经肽、生物胺及各种信号通路。一个新出现的概念是,杏仁核活动的差异与疼痛易感性和恢复力的表型差异相关,并且可能是疼痛复杂性和持续性的决定性因素。

相似文献

1
Amygdala physiology in pain.疼痛中的杏仁核生理学
Handb Behav Neurosci. 2020;26:101-113. doi: 10.1016/b978-0-12-815134-1.00004-0. Epub 2020 Mar 31.
3
Amygdala pain mechanisms.杏仁核疼痛机制。
Handb Exp Pharmacol. 2015;227:261-84. doi: 10.1007/978-3-662-46450-2_13.
4
Amygdala Plasticity and Pain.杏仁核可塑性与疼痛
Pain Res Manag. 2017;2017:8296501. doi: 10.1155/2017/8296501. Epub 2017 Dec 10.
5
Amygdala, neuropeptides, and chronic pain-related affective behaviors.杏仁核、神经肽与慢性痛相关的情感行为。
Neuropharmacology. 2020 Jun 15;170:108052. doi: 10.1016/j.neuropharm.2020.108052. Epub 2020 Mar 15.
7
The amygdala and persistent pain.杏仁核与持续性疼痛。
Neuroscientist. 2004 Jun;10(3):221-34. doi: 10.1177/1073858403261077.
9
Cortico-limbic pain mechanisms.皮质-边缘疼痛机制。
Neurosci Lett. 2019 May 29;702:15-23. doi: 10.1016/j.neulet.2018.11.037. Epub 2018 Nov 29.

引用本文的文献

2
Experiencing pain: electromagnetic waves, consciousness, and the mind.体验疼痛:电磁波、意识与心灵。
Front Hum Neurosci. 2025 Jul 24;19:1568019. doi: 10.3389/fnhum.2025.1568019. eCollection 2025.
3
Neuronal physiology of amygdala neurons in the context of injury and pain.损伤和疼痛背景下杏仁核神经元的神经生理学
Neurobiol Pain. 2025 Jun 27;18:100190. doi: 10.1016/j.ynpai.2025.100190. eCollection 2025 Jul-Dec.

本文引用的文献

6
Scaling Up Cortical Control Inhibits Pain.皮层控制增强可抑制疼痛。
Cell Rep. 2018 May 1;23(5):1301-1313. doi: 10.1016/j.celrep.2018.03.139.
10
Quantified Coexpression Analysis of Central Amygdala Subpopulations.量化中央杏仁核亚群的共表达分析。
eNeuro. 2018 Feb 6;5(1). doi: 10.1523/ENEURO.0010-18.2018. eCollection 2018 Jan-Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验