Suppr超能文献

疼痛中的杏仁核生理学

Amygdala physiology in pain.

作者信息

Neugebauer Volker

机构信息

Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center | School of Medicine, 3601 4th Street | Mail Stop 6592, Lubbock, Texas 79430-6592.

出版信息

Handb Behav Neurosci. 2020;26:101-113. doi: 10.1016/b978-0-12-815134-1.00004-0. Epub 2020 Mar 31.

Abstract

The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.

摘要

杏仁核已成为疼痛及疼痛调节情感维度的一个重要脑区。杏仁核通过直接和间接途径接收伤害性信息。这些兴奋性输入汇聚于杏仁核输出区域(中央核),并可受到作为(前额叶)皮质调节靶点的抑制性元件的调制。例如,杏仁核内插细胞群中的抑制性神经元投射至中央核以发挥门控功能,中央核内的抑制性(蛋白激酶Cδ)中间神经元亦是如此。在疼痛状态下,由于兴奋 - 抑制失衡,输出神经元会发生突触可塑性,从而引发疼痛样行为和疼痛持续。杏仁核中与疼痛相关的神经可塑性机制包括经典递质、神经肽、生物胺及各种信号通路。一个新出现的概念是,杏仁核活动的差异与疼痛易感性和恢复力的表型差异相关,并且可能是疼痛复杂性和持续性的决定性因素。

相似文献

1
Amygdala physiology in pain.
Handb Behav Neurosci. 2020;26:101-113. doi: 10.1016/b978-0-12-815134-1.00004-0. Epub 2020 Mar 31.
2
5-HT Receptor Knockdown in the Amygdala Inhibits Neuropathic-Pain-Related Plasticity and Behaviors.
J Neurosci. 2017 Feb 8;37(6):1378-1393. doi: 10.1523/JNEUROSCI.2468-16.2016. Epub 2016 Dec 23.
3
Amygdala pain mechanisms.
Handb Exp Pharmacol. 2015;227:261-84. doi: 10.1007/978-3-662-46450-2_13.
4
Amygdala Plasticity and Pain.
Pain Res Manag. 2017;2017:8296501. doi: 10.1155/2017/8296501. Epub 2017 Dec 10.
5
Amygdala, neuropeptides, and chronic pain-related affective behaviors.
Neuropharmacology. 2020 Jun 15;170:108052. doi: 10.1016/j.neuropharm.2020.108052. Epub 2020 Mar 15.
6
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
J Neurosci. 2016 Sep 7;36(36):9391-406. doi: 10.1523/JNEUROSCI.0874-16.2016.
7
The amygdala and persistent pain.
Neuroscientist. 2004 Jun;10(3):221-34. doi: 10.1177/1073858403261077.
8
Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions.
J Neurosci. 2017 May 17;37(20):5051-5064. doi: 10.1523/JNEUROSCI.3940-16.2017. Epub 2017 Apr 14.
9
Cortico-limbic pain mechanisms.
Neurosci Lett. 2019 May 29;702:15-23. doi: 10.1016/j.neulet.2018.11.037. Epub 2018 Nov 29.

引用本文的文献

1
Bidirectional modulation of somatostatin-expressing interneurons in the basolateral amygdala reduces neuropathic pain perception in mice.
Front Pain Res (Lausanne). 2025 Aug 13;6:1602036. doi: 10.3389/fpain.2025.1602036. eCollection 2025.
2
Experiencing pain: electromagnetic waves, consciousness, and the mind.
Front Hum Neurosci. 2025 Jul 24;19:1568019. doi: 10.3389/fnhum.2025.1568019. eCollection 2025.
3
Neuronal physiology of amygdala neurons in the context of injury and pain.
Neurobiol Pain. 2025 Jun 27;18:100190. doi: 10.1016/j.ynpai.2025.100190. eCollection 2025 Jul-Dec.
5
Cells and circuits for amygdala neuroplasticity in the transition to chronic pain.
Cell Rep. 2024 Sep 24;43(9):114669. doi: 10.1016/j.celrep.2024.114669. Epub 2024 Aug 22.
10
Impaired amygdala astrocytic signaling worsens neuropathic pain-associated neuronal functions and behaviors.
Front Pharmacol. 2024 Mar 21;15:1368634. doi: 10.3389/fphar.2024.1368634. eCollection 2024.

本文引用的文献

3
Fear extinction learning ability predicts neuropathic pain behaviors and amygdala activity in male rats.
Mol Pain. 2018 Jan-Dec;14:1744806918804441. doi: 10.1177/1744806918804441. Epub 2018 Sep 13.
6
Scaling Up Cortical Control Inhibits Pain.
Cell Rep. 2018 May 1;23(5):1301-1313. doi: 10.1016/j.celrep.2018.03.139.
7
Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain.
J Neurosci. 2018 May 16;38(20):4829-4839. doi: 10.1523/JNEUROSCI.2731-17.2018. Epub 2018 Apr 25.
8
Pathway-Specific Alterations of Cortico-Amygdala Transmission in an Arthritis Pain Model.
ACS Chem Neurosci. 2018 Sep 19;9(9):2252-2261. doi: 10.1021/acschemneuro.8b00022. Epub 2018 Apr 13.
9
Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain.
Brain Struct Funct. 2018 Jul;223(6):2627-2639. doi: 10.1007/s00429-018-1648-7. Epub 2018 Mar 17.
10
Quantified Coexpression Analysis of Central Amygdala Subpopulations.
eNeuro. 2018 Feb 6;5(1). doi: 10.1523/ENEURO.0010-18.2018. eCollection 2018 Jan-Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验