Zhao Fengjiao, Zhang Feng, Han Dongxue, Huang Kai, Yang Yang, Yin Hongming
School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China.
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Phys Chem Chem Phys. 2021 May 5;23(17):10448-10455. doi: 10.1039/d1cp00417d.
Solar to hydrogen (H2) conversion systems based on carbon nanomaterials have shown great potentials in the clean energy field recently. However, for most systems, energy level alignments and light-induced redox processes are still unclear, which hinder artificial designing for higher efficiency of solar energy conversion and further applications. Here we report 77% enhancement in the light-driven H2 generation efficiency of N,S co-doped carbon quantum dot (N,S-CQD) aqueous system by adding TiO2 nanoparticles. Using steady-state and transient spectroscopy, four specific energy levels of CQDs are confirmed with the band gaps of 3.55 eV (X4), 2.99 eV (X3), 2.76 eV (X2) and 1.75 eV (X1), respectively. The X2 energy band is highly active for H+ reduction with a longer lifetime of 13.38 ns. Moreover, the observed low efficiency of intrinsic transition from X3 to X2 band of N,S-CQDs accounts for the poor performance of solar to H2 conversion for pure N,S-CQDs based on H2 generation and detailed time-resolved spectroscopic results. The mechanism of H2 generation enhancement can be explained by multiple electron transfer processes between N,S-CQDs and TiO2 NPs where TiO2 NPs act as electron intermediates that efficiently transfer electrons from the inert band (X3) to the active band (X2) for H2 generation. This study enriches the fundamental understanding of N,S-CQDs and provides a new pathway toward high-performance N,S-CQD-based solar to H2 conversion systems.
基于碳纳米材料的太阳能制氢(H₂)转换系统近来在清洁能源领域展现出了巨大潜力。然而,对于大多数系统而言,能级排列和光致氧化还原过程仍不明确,这阻碍了为提高太阳能转换效率及进一步应用而进行的人工设计。在此,我们报告通过添加二氧化钛纳米颗粒,N,S共掺杂碳量子点(N,S-CQD)水体系的光驱动产氢效率提高了77%。利用稳态和瞬态光谱,确认了碳量子点的四个特定能级,其带隙分别为3.55电子伏特(X4)、2.99电子伏特(X3)、2.76电子伏特(X2)和1.75电子伏特(X1)。X2能带对H⁺还原具有高活性,其寿命更长,为13.38纳秒。此外,观察到的N,S-CQDs从X3到X2能带的本征跃迁效率较低,这解释了基于产氢和详细的时间分辨光谱结果的纯N,S-CQDs太阳能制氢性能不佳的原因。产氢增强的机制可以通过N,S-CQDs与二氧化钛纳米颗粒之间的多电子转移过程来解释,其中二氧化钛纳米颗粒作为电子中间体,有效地将电子从惰性能带(X3)转移到活性能带(X2)以产生氢气。这项研究丰富了对N,S-CQDs的基本认识,并为基于N,S-CQD的高性能太阳能制氢转换系统提供了一条新途径。