Suppr超能文献

最大化表面点击反应的转化率以实现金属氧化物纳米线上的通用分子修饰

Maximizing Conversion of Surface Click Reactions for Versatile Molecular Modification on Metal Oxide Nanowires.

作者信息

Yamaguchi Rimon, Hosomi Takuro, Otani Masaya, Nagashima Kazuki, Takahashi Tsunaki, Zhang Guozhu, Kanai Masaki, Masai Hiroshi, Terao Jun, Yanagida Takeshi

机构信息

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan.

出版信息

Langmuir. 2021 May 4;37(17):5172-5179. doi: 10.1021/acs.langmuir.1c00106. Epub 2021 Apr 23.

Abstract

Click reactions (e.g., Huisgen cycloaddition) on metal oxide nanostructures offer a versatile and robust surface molecular modification for various applications because they form strong covalent bonds in a wide range of molecular substrates. This study reports a rational strategy to maximize the conversion rate of surface click reactions on single-crystalline ZnO nanowires by monitoring the reaction progress. p-Polarized multiple-angle incidence resolution spectrometry (pMAIRS) and Fourier-transformed infrared (FT-IR) spectroscopy were employed to monitor the reaction progress of an azide-terminated self-assembled monolayer (SAM) on single-crystalline ZnO nanowires. Although various reaction parameters including the concentration of Cu(I) catalysts, triazolyl ligands, solvents, and target alkynes were systematically examined for the surface click reactions, 10-30% of terminal azide on the nanowire surface remained unreacted. Temperature-dependent FT-IR measurements revealed that such unreacted residual azides deteriorate the thermal stability of the nanowire molecular layer. To overcome this observed conversion limitation of click reactions on nanostructure surfaces, we considered the steric hindrance around the closely packed SAM reaction points, then experimented with dispersing the azide moiety into a methyl-terminated SAM. The mixed-SAM method significantly improved the azide conversion rate to almost 100%. This reaction method enables the construction of spatially patterned molecular surface modifications on metal oxide nanowire arrays without detrimental unreacted azide groups.

摘要

金属氧化物纳米结构上的点击反应(例如,惠斯根环加成反应)为各种应用提供了一种通用且强大的表面分子修饰方法,因为它们能在多种分子底物中形成强共价键。本研究报告了一种通过监测反应进程来最大化单晶ZnO纳米线上表面点击反应转化率的合理策略。采用p偏振多角度入射分辨光谱法(pMAIRS)和傅里叶变换红外光谱法(FT-IR)来监测单晶ZnO纳米线上叠氮基封端的自组装单分子层(SAM)的反应进程。尽管针对表面点击反应系统地研究了包括Cu(I)催化剂、三唑基配体、溶剂和目标炔烃的浓度在内的各种反应参数,但纳米线表面仍有10%-30%的末端叠氮未反应。温度依赖的FT-IR测量结果表明,这种未反应的残余叠氮会降低纳米线分子层的热稳定性。为了克服在纳米结构表面观察到的点击反应转化率限制,我们考虑了紧密堆积的SAM反应点周围的空间位阻,然后尝试将叠氮部分分散到甲基封端的SAM中。混合SAM方法显著提高了叠氮转化率,几乎达到100%。这种反应方法能够在金属氧化物纳米线阵列上构建空间图案化的分子表面修饰,而不会产生有害的未反应叠氮基团。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验