Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan.
Institute of Engineering Innovation , The University of Tokyo , 2-11-16 Yayoi , Bunkyo , Tokyo 113-8656 , Japan.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40260-40266. doi: 10.1021/acsami.9b13231. Epub 2019 Oct 17.
Emerging interactive electronics for the Internet of Things era inherently require the long-term stability of semiconductor devices exposed to air. Nanostructured metal oxides are promising options for such atmospherically stable semiconductor devices owing to their inherent stability in air. Among various oxide nanostructures, ZnO nanowires have been the most intensively studied for electrical and optical device applications. Here, we demonstrate a strategy for achieving the atmospheric electrical stability of ZnO nanowire devices. Although the chemically active oxygen and water in air are strong candidates for affecting the electrical stability of nanoscale metal oxides, we found that the ppm-level redox-inactive CO in air critically determines the atmospheric electrical stability of hydrothermally grown single-crystalline ZnO nanowires. A series of analyses using atmosphere-controlled electrical characterization of single nanowire devices, Fourier transform infrared spectroscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy consistently revealed that atmospheric CO reacts substantially with the ZnO nanowire surfaces, even at room temperature, to form an electrically insulative zinc carbonate thin layer. The formation of this layer essentially limits the atmospheric electrical stability of the ZnO nanowire devices. Based on this surface carbonation mechanism, we propose a strategy to suppress the detrimental surface reaction, which is based on (1) reducing the density of surface hydroxyl groups and (2) improving the nanowire crystallinity by thermal pretreatment. This approach improves the atmospheric electrical stability to at least 40 days in air.
面向物联网时代的新兴交互电子产品本质上要求暴露于空气中的半导体器件具有长期稳定性。由于其在空气中固有的稳定性,纳米结构金属氧化物是此类具有空气稳定性的半导体器件的理想选择。在各种氧化物纳米结构中,ZnO 纳米线因其在电气和光学器件应用方面的研究最为深入。在此,我们提出了一种实现 ZnO 纳米线器件的大气电稳定性的策略。尽管空气中具有化学活性的氧和水是影响纳米级金属氧化物电稳定性的有力候选物,但我们发现,ppm 级的空气中氧化还原非活性 CO 对于水热生长的单晶 ZnO 纳米线的大气电稳定性起着至关重要的作用。通过对单个纳米线器件进行气氛控制的电气特性分析、傅里叶变换红外光谱、扫描透射电子显微镜和 X 射线光电子能谱的一系列分析,我们一致发现,即使在室温下,大气 CO 也会与 ZnO 纳米线表面发生大量反应,形成电绝缘的碳酸锌薄层。该层的形成从本质上限制了 ZnO 纳米线器件的大气电稳定性。基于这种表面碳化机制,我们提出了一种抑制有害表面反应的策略,该策略基于(1)降低表面羟基的密度,以及(2)通过热预处理提高纳米线的结晶度。通过这种方法,器件的大气电稳定性至少提高到 40 天。