Nakamura Kentaro, Takahashi Tsunaki, Hosomi Takuro, Tanaka Wataru, Yamaguchi Yu, Liu Jiangyang, Kanai Masaki, Tsuji Yuta, Yanagida Takeshi
Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan.
Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka, Japan.
Nat Commun. 2024 Oct 31;15(1):9211. doi: 10.1038/s41467-024-53577-8.
Catalysis-based electrical sensing of volatile organic compounds on metal oxide surfaces is a powerful method for molecular discrimination. However, catalyst deactivation caused by the poisoning of catalytic sites by analytes and/or catalyzed products remains a challenge. This study highlights the underestimated role of van der Waals interactions between hydrophobic aliphatic alkyl chains and hydrophilic ZnO surfaces in mitigating catalyst deactivation during aliphatic aldehyde sensing. By immobilizing octadecylphosphonic acid (ODPA) on ZnO nanowire sensors, recovery times for nonanal detection are significantly reduced without compromising sensitivity. Temperature-programmed measurements demonstrate a reduction in desorption temperature of carboxylates on ODPA-modified ZnO to below 150 °C, whereas carboxylates on bare ZnO remain above 300 °C, indicating a significant decrease in catalyst deactivation. Density functional theory calculations reveal that accumulated van der Waals interactions between alkyl chains and ZnO surfaces significantly contributed to adsorption molecular kinetics. IR spectroscopy using deuterated self-assembled monolayers (SAMs) reveals conformational changes of alkyl chains within the SAMs caused by aldehyde adsorption, supporting the suggested adsorption kinetics. A model is proposed based on the dynamic surface-covering by alkyl chains destabilizes catalytically oxidized carboxylic acids.
基于催化的金属氧化物表面挥发性有机化合物电传感是一种强大的分子鉴别方法。然而,分析物和/或催化产物对催化位点的中毒导致催化剂失活仍然是一个挑战。本研究强调了疏水性脂肪族烷基链与亲水性ZnO表面之间的范德华相互作用在减轻脂肪族醛传感过程中催化剂失活方面被低估的作用。通过将十八烷基膦酸(ODPA)固定在ZnO纳米线传感器上,壬醛检测的恢复时间显著缩短,而不影响灵敏度。程序升温测量表明,ODPA修饰的ZnO上羧酸盐的解吸温度降低到150°C以下,而裸ZnO上的羧酸盐仍高于300°C,表明催化剂失活显著降低。密度泛函理论计算表明,烷基链与ZnO表面之间积累的范德华相互作用对吸附分子动力学有显著贡献。使用氘代自组装单分子层(SAMs)的红外光谱揭示了醛吸附引起的SAMs内烷基链的构象变化,支持了所提出的吸附动力学。基于烷基链的动态表面覆盖提出了一个模型,该模型使催化氧化的羧酸不稳定。