Institut de Science et d' Ingénierie Supramoléculaires (ISIS), University of Strasbourg and CNRS, 8 Alleé Gaspard Monge, 67083 Strasbourg Cedex, France.
Institute for Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
J Am Chem Soc. 2021 May 26;143(20):7681-7687. doi: 10.1021/jacs.1c00444. Epub 2021 Apr 23.
An important aspect in the field of supramolecular chemistry is the control of the composition and aggregation state of supramolecular polymers and the possibility of stabilizing out-of-equilibrium states. The ability to freeze metastable systems and release them on demand, under spatiotemporal control, to allow their thermodynamic evolution toward the most stable species is a very attractive concept. Such temporal blockage could be realized using stimuli-responsive "boxes" able to trap and redirect supramolecular polymers. In this work, we report the use of a redox responsive nanocontainer, an organosilica nanocage (), for controlling the dynamic self-assembly pathway of supramolecular aggregates of a luminescent platinum compound (). The aggregation of the complexes leads to different photoluminescent properties that allow visualization of the different assemblies and their evolution. We discovered that the nanocontainers can encapsulate kinetically trapped species characterized by an orange emission, preventing their evolution into the thermodynamically stable aggregation state characterized by blue-emitting fibers. Interestingly, the out-of-equilibrium trapped Pt species () can be released on demand by the redox-triggered degradation of , re-establishing their self-assembly toward the thermodynamically stable state. To demonstrate that control of the self-assembly pathway occurs also in complex media, we followed the evolution of the supramolecular aggregates inside living cells, where the destruction of the cages allows the intracellular release of aggregates, followed by the formation of microscopic blue emitting fibers. Our approach highlights the importance of "ondemand" confinement as a tool to temporally stabilize transient species which modulate complex self-assembly pathways in supramolecular polymerization.
超分子化学领域的一个重要方面是控制超分子聚合物的组成和聚集状态,以及稳定非平衡态的可能性。能够冻结亚稳系统,并在时空控制下按需释放它们,以允许它们向最稳定的物种热力学演化,这是一个非常有吸引力的概念。这种时间阻断可以通过使用能够捕获和重定向超分子聚合物的刺激响应“盒子”来实现。在这项工作中,我们报告了使用氧化还原响应纳米容器,一种有机硅纳米笼(),来控制发光铂化合物()的超分子聚合物的动态自组装途径。配合物的聚集导致不同的光致发光性质,允许可视化不同的组装体及其演化。我们发现,纳米容器可以封装动力学捕获的物种,其特征为橙色发射,防止它们演化为热力学稳定的聚集状态,其特征为蓝色发射纤维。有趣的是,通过氧化还原触发的降解,可以按需释放出处于非平衡状态的被捕获的 Pt 物种(),重新建立其向热力学稳定状态的自组装。为了证明自组装途径的控制也发生在复杂介质中,我们跟踪了活细胞内超分子聚集体的演化,其中笼的破坏允许细胞内释放 聚集体,随后形成微观蓝色发射纤维。我们的方法强调了“按需”限制作为一种工具的重要性,它可以暂时稳定瞬态物种,从而调节超分子聚合中的复杂自组装途径。