Suppr超能文献

面向旋转的协作式自监督学习在视网膜疾病诊断中的应用。

Rotation-Oriented Collaborative Self-Supervised Learning for Retinal Disease Diagnosis.

出版信息

IEEE Trans Med Imaging. 2021 Sep;40(9):2284-2294. doi: 10.1109/TMI.2021.3075244. Epub 2021 Aug 31.

Abstract

The automatic diagnosis of various conventional ophthalmic diseases from fundus images is important in clinical practice. However, developing such automatic solutions is challenging due to the requirement of a large amount of training data and the expensive annotations for medical images. This paper presents a novel self-supervised learning framework for retinal disease diagnosis to reduce the annotation efforts by learning the visual features from the unlabeled images. To achieve this, we present a rotation-oriented collaborative method that explores rotation-related and rotation-invariant features, which capture discriminative structures from fundus images and also explore the invariant property used for retinal disease classification. We evaluate the proposed method on two public benchmark datasets for retinal disease classification. The experimental results demonstrate that our method outperforms other self-supervised feature learning methods (around 4.2% area under the curve (AUC)). With a large amount of unlabeled data available, our method can surpass the supervised baseline for pathologic myopia (PM) and is very close to the supervised baseline for age-related macular degeneration (AMD), showing the potential benefit of our method in clinical practice.

摘要

从眼底图像中自动诊断各种常见眼科疾病在临床实践中非常重要。然而,由于需要大量的训练数据和医疗图像的昂贵注释,开发这种自动解决方案具有挑战性。本文提出了一种新颖的视网膜疾病诊断的自监督学习框架,通过从未标记的图像中学习视觉特征来减少注释工作。为了实现这一点,我们提出了一种面向旋转的协作方法,该方法探索了旋转相关和旋转不变的特征,这些特征从眼底图像中捕获了有区别的结构,并探索了用于视网膜疾病分类的不变特性。我们在两个用于视网膜疾病分类的公共基准数据集上评估了所提出的方法。实验结果表明,我们的方法优于其他自监督特征学习方法(约 4.2% 的曲线下面积(AUC))。有大量可用的未标记数据时,我们的方法可以超过病理性近视(PM)的监督基线,并且非常接近年龄相关性黄斑变性(AMD)的监督基线,这表明我们的方法在临床实践中有潜在的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验