文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comparative analysis of supervised and self-supervised learning with small and imbalanced medical imaging datasets.

作者信息

Espis Andrea, Marzi Chiara, Diciotti Stefano

机构信息

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, Via dell'Università 50, 47521, Cesena, Italy.

Department of Statistics, Computer Science and Applications "Giuseppe Parenti", University of Florence, 50134, Florence, Italy.

出版信息

Sci Rep. 2025 Sep 2;15(1):32345. doi: 10.1038/s41598-025-99000-0.


DOI:10.1038/s41598-025-99000-0
PMID:40897785
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405560/
Abstract

Self-supervised learning (SSL) in computer vision has shown its potential to reduce reliance on labeled data. However, most studies focused on balanced, large, broad-domain datasets like ImageNet, whereas, in real-world medical applications, dataset size is typically limited. This study compares the performance of SSL versus supervised learning (SL) on small, imbalanced medical imaging datasets. We experimented with four binary classification tasks: age prediction and diagnosis of Alzheimer's disease from brain magnetic resonance imaging scans, pneumonia from chest radiograms, and retinal diseases associated with choroidal neovascularization from optical coherence tomography with a mean size of training sets of 843 images, 771 images, 1,214 images, and 33,484 images, respectively. We tested various combinations of label availability and class frequency distribution, repeating the training with different random seeds to assess result uncertainty. In most experiments involving small training sets, SL outperformed the selected SSL paradigms, even when a limited portion of labeled data was available. Our findings highlight the importance of carefully selecting learning paradigms based on specific application requirements, which are influenced by factors such as training set size, label availability, and class frequency distribution.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/1863b5317bda/41598_2025_99000_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/02021227a074/41598_2025_99000_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/5d1f935fcd29/41598_2025_99000_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/915e3aeeca9b/41598_2025_99000_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/0c06f77b25dd/41598_2025_99000_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/397116d1f4df/41598_2025_99000_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/f9e13b2333e0/41598_2025_99000_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/af9e3777c9e0/41598_2025_99000_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/13295fdb5964/41598_2025_99000_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/ef8573ee2bdd/41598_2025_99000_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/1863b5317bda/41598_2025_99000_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/02021227a074/41598_2025_99000_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/5d1f935fcd29/41598_2025_99000_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/915e3aeeca9b/41598_2025_99000_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/0c06f77b25dd/41598_2025_99000_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/397116d1f4df/41598_2025_99000_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/f9e13b2333e0/41598_2025_99000_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/af9e3777c9e0/41598_2025_99000_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/13295fdb5964/41598_2025_99000_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/ef8573ee2bdd/41598_2025_99000_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/12405560/1863b5317bda/41598_2025_99000_Fig10_HTML.jpg

相似文献

[1]
Comparative analysis of supervised and self-supervised learning with small and imbalanced medical imaging datasets.

Sci Rep. 2025-9-2

[2]
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.

J Magn Reson Imaging. 2025-6

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Explainable self-supervised learning for medical image diagnosis based on DINO V2 model and semantic search.

Sci Rep. 2025-9-1

[5]
Boundary-aware information maximization for self-supervised medical image segmentation.

Med Image Anal. 2024-5

[6]
Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2.

JAMA Ophthalmol. 2024-3-1

[7]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[8]
A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging.

Med Phys. 2025-3-29

[9]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[10]
OCT-SelfNet: a self-supervised framework with multi-source datasets for generalized retinal disease detection.

Front Big Data. 2025-7-29

本文引用的文献

[1]
Mine Your Own Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels.

IEEE Trans Pattern Anal Mach Intell. 2024-9-13

[2]
A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends.

IEEE Trans Pattern Anal Mach Intell. 2024-12

[3]
Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic Experts.

Med Image Comput Comput Assist Interv. 2023-10

[4]
ACTION++: Improving Semi-supervised Medical Image Segmentation with Adaptive Anatomical Contrast.

Med Image Comput Comput Assist Interv. 2023-10

[5]
Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective.

Adv Neural Inf Process Syst. 2023-12

[6]
Exploring simple triplet representation learning.

Comput Struct Biotechnol J. 2024-4-12

[7]
Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service.

Artif Intell Med. 2024-3

[8]
Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.

Sci Rep. 2023-11-20

[9]
Class-Aware Adversarial Transformers for Medical Image Segmentation.

Adv Neural Inf Process Syst. 2022-12

[10]
Dive into the details of self-supervised learning for medical image analysis.

Med Image Anal. 2023-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索