Suppr超能文献

一种使用机器学习对透析患者干体重进行调整的新方法。

A novel approach to dry weight adjustments for dialysis patients using machine learning.

作者信息

Kim Hae Ri, Bae Hong Jin, Jeon Jae Wan, Ham Young Rok, Na Ki Ryang, Lee Kang Wook, Hyon Yun Kyong, Choi Dae Eun

机构信息

Division of Nephrology, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea.

Department of Nephrology, Medical School, Chungnam National University, Daejeon, South Korea.

出版信息

PLoS One. 2021 Apr 23;16(4):e0250467. doi: 10.1371/journal.pone.0250467. eCollection 2021.

Abstract

BACKGROUND AND AIMS

Knowledge of the proper dry weight plays a critical role in the efficiency of dialysis and the survival of hemodialysis patients. Recently, bioimpedance spectroscopy(BIS) has been widely used for set dry weight in hemodialysis patients. However, BIS is often misrepresented in clinical healthy weight. In this study, we tried to predict the clinically proper dry weight (DWCP) using machine learning for patient's clinical information including BIS. We then analyze the factors that influence the prediction of the clinical dry weight.

METHODS

As a retrospective, single center study, data of 1672 hemodialysis patients were reviewed. DWCP data were collected when the dry weight was measured using the BIS (DWBIS). The gap between the two (GapDW) was calculated and then grouped and analyzed based on gaps of 1 kg and 2 kg.

RESULTS

Based on the gap between DWBIS and DWCP, 972, 303, and 384 patients were placed in groups with gaps of <1 kg, ≧1kg and <2 kg, and ≧2 kg, respectively. For less than 1 kg and 2 kg of GapDW, It can be seen that the average accuracies for the two groups are 83% and 72%, respectively, in usign XGBoost machine learning. As GapDW increases, it is more difficult to predict the target property. As GapDW increase, the mean values of hemoglobin, total protein, serum albumin, creatinine, phosphorus, potassium, and the fat tissue index tended to decrease. However, the height, total body water, extracellular water (ECW), and ECW to intracellular water ratio tended to increase.

CONCLUSIONS

Machine learning made it slightly easier to predict DWCP based on DWBIS under limited conditions and gave better insights into predicting DWCP. Malnutrition-related factors and ECW were important in reflecting the differences between DWBIS and DWCP.

摘要

背景与目的

合适干体重的知识对透析效率及血液透析患者的生存起着关键作用。近年来,生物电阻抗光谱法(BIS)已广泛用于确定血液透析患者的干体重。然而,BIS在临床健康体重方面常常被误判。在本研究中,我们尝试利用机器学习,根据患者包括BIS在内的临床信息来预测临床合适干体重(DWCP)。然后,我们分析影响临床干体重预测的因素。

方法

作为一项回顾性单中心研究,我们回顾了1672例血液透析患者的数据。当使用BIS测量干体重(DWBIS)时收集DWCP数据。计算两者之间的差距(GapDW),然后根据1kg和2kg的差距进行分组并分析。

结果

根据DWBIS与DWCP之间的差距,972例、303例和384例患者分别被分入差距<1kg、≥1kg且<2kg以及≥2kg的组。对于GapDW小于1kg和2kg的情况,在使用XGBoost机器学习时,可见两组的平均准确率分别为83%和72%。随着GapDW的增加,预测目标属性变得更加困难。随着GapDW增加,血红蛋白、总蛋白、血清白蛋白、肌酐、磷、钾和脂肪组织指数的平均值趋于下降。然而,身高、总体水、细胞外液(ECW)以及ECW与细胞内液的比值趋于增加。

结论

在有限条件下,机器学习使基于DWBIS预测DWCP稍微容易一些,并为预测DWCP提供了更好的见解。与营养不良相关的因素和ECW在反映DWBIS和DWCP之间的差异方面很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e578/8064601/042b6f544c8f/pone.0250467.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验