Suppr超能文献

计算资源在抗生素耐药性管理中的应用:加速药物研发。

Computational resources in the management of antibiotic resistance: Speeding up drug discovery.

机构信息

Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India.

Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India.

出版信息

Drug Discov Today. 2021 Sep;26(9):2138-2151. doi: 10.1016/j.drudis.2021.04.016. Epub 2021 Apr 20.

Abstract

This article reviews more than 50 computational resources developed in past two decades for forecasting of antibiotic resistance (AR)-associated mutations, genes and genomes. More than 30 databases have been developed for AR-associated information, but only a fraction of them are updated regularly. A large number of methods have been developed to find AR genes, mutations and genomes, with most of them based on similarity-search tools such as BLAST and HMMER. In addition, methods have been developed to predict the inhibition potential of antibiotics against a bacterial strain from the whole-genome data of bacteria. This review also discuss computational resources that can be used to manage the treatment of AR-associated diseases.

摘要

本文综述了过去二十年来开发的 50 多种用于预测抗生素耐药(AR)相关突变、基因和基因组的计算资源。已经开发了 30 多个用于 AR 相关信息的数据库,但只有其中一部分定期更新。已经开发了大量用于发现 AR 基因、突变和基因组的方法,其中大多数方法基于相似性搜索工具,如 BLAST 和 HMMER。此外,还开发了从细菌的全基因组数据预测抗生素对细菌菌株的抑制潜力的方法。本文还讨论了可用于管理 AR 相关疾病治疗的计算资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验