Suppr超能文献

用于预测、扫描和设计防御素的工具。

Tool for Predicting, Scanning, and Designing Defensins.

机构信息

Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.

Department of Computer Science, Indraprastha Institute of Information Technology, New Delhi, India.

出版信息

Front Immunol. 2021 Nov 22;12:780610. doi: 10.3389/fimmu.2021.780610. eCollection 2021.

Abstract

Defensins are host defense peptides present in nearly all living species, which play a crucial role in innate immunity. These peptides provide protection to the host, either by killing microbes directly or indirectly by activating the immune system. In the era of antibiotic resistance, there is a need to develop a fast and accurate method for predicting defensins. In this study, a systematic attempt has been made to develop models for predicting defensins from available information on defensins. We created a dataset of defensins and non-defensins called the main dataset that contains 1,036 defensins and 1,035 AMPs (antimicrobial peptides, or non-defensins) to understand the difference between defensins and AMPs. Our analysis indicates that certain residues like Cys, Arg, and Tyr are more abundant in defensins in comparison to AMPs. We developed machine learning technique-based models on the main dataset using a wide range of peptide features. Our SVM (support vector machine)-based model discriminates defensins and AMPs with MCC of 0.88 and AUC of 0.98 on the validation set of the main dataset. In addition, we created an alternate dataset that consists of 1,036 defensins and 1,054 non-defensins obtained from Swiss-Prot. Models were also developed on the alternate dataset to predict defensins. Our SVM-based model achieved maximum MCC of 0.96 with AUC of 0.99 on the validation set of the alternate dataset. All models were trained, tested, and validated using standard protocols. Finally, we developed a web-based service "DefPred" to predict defensins, scan defensins in proteins, and design the best defensins from their analogs. The stand-alone software and web server of DefPred are available at https://webs.iiitd.edu.in/raghava/defpred.

摘要

防御素是存在于几乎所有生物中的宿主防御肽,在先天免疫中起着至关重要的作用。这些肽通过直接杀死微生物或通过激活免疫系统为宿主提供保护。在抗生素耐药性的时代,需要开发一种快速准确的方法来预测防御素。在这项研究中,我们系统地尝试从防御素的可用信息中开发预测防御素的模型。我们创建了一个称为主数据集的防御素和非防御素数据集,其中包含 1036 个防御素和 1035 个抗菌肽(AMPs,或非防御素),以了解防御素和 AMP 之间的区别。我们的分析表明,与 AMP 相比,某些残基,如 Cys、Arg 和 Tyr,在防御素中更为丰富。我们在主数据集上使用广泛的肽特征开发了基于机器学习技术的模型。我们的 SVM(支持向量机)基于模型在主数据集的验证集上区分防御素和 AMP,MCC 为 0.88,AUC 为 0.98。此外,我们创建了一个由从 Swiss-Prot 获得的 1036 个防御素和 1054 个非防御素组成的替代数据集。还在替代数据集中开发了用于预测防御素的模型。我们的 SVM 基于模型在替代数据集的验证集上实现了最高 MCC 为 0.96,AUC 为 0.99。所有模型均使用标准协议进行训练、测试和验证。最后,我们开发了一个名为“DefPred”的基于网络的服务,用于预测防御素、在蛋白质中扫描防御素以及从它们的类似物中设计最佳防御素。DefPred 的独立软件和网络服务器可在 https://webs.iiitd.edu.in/raghava/defpred 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d477/8645896/e9d4c337d31c/fimmu-12-780610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验