Suppr超能文献

骨细胞机械转导中的细胞骨架和连接元件。

The cytoskeleton and connected elements in bone cell mechano-transduction.

机构信息

Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..

出版信息

Bone. 2021 Aug;149:115971. doi: 10.1016/j.bone.2021.115971. Epub 2021 Apr 21.

Abstract

Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.

摘要

骨骼是一种对机械环境变化具有响应能力的组织。应变增加会导致骨量增加,而应变减少则会导致骨量减少。由于机械应力是骨量和质量的调节剂,因此了解骨细胞如何感知和转导这些机械线索并将其转化为生物学变化非常重要,这有助于确定可利用的药物靶点,以恢复骨细胞的机械敏感性或模拟机械负荷。许多研究已经确定了单个细胞骨架成分——微管、肌动蛋白和中间丝——作为骨骼中的机械传感器。然而,鉴于单个细胞骨架成分之间的高度互联性和相互作用,以及它们可以组装成多种不同的细胞结构,细胞骨架作为一个整体,而不是特定的单个成分,可能是骨细胞机械转导所必需的。这篇综述将探讨每个细胞骨架元件在骨细胞机械转导中的作用,并提出一个统一的观点,即这些元件如何相互作用并协同工作,以创建一个机械传感器,该传感器对于控制机械应力后的骨形成是必要的。

相似文献

1
The cytoskeleton and connected elements in bone cell mechano-transduction.
Bone. 2021 Aug;149:115971. doi: 10.1016/j.bone.2021.115971. Epub 2021 Apr 21.
2
Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling.
Sci China Life Sci. 2019 Oct;62(10):1368-1374. doi: 10.1007/s11427-018-9488-1. Epub 2019 May 14.
3
The Mechanical Role of Microtubules in Tissue Remodeling.
Bioessays. 2020 May;42(5):e1900244. doi: 10.1002/bies.201900244. Epub 2020 Apr 6.
4
Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections.
J Bone Miner Res. 1998 Oct;13(10):1555-68. doi: 10.1359/jbmr.1998.13.10.1555.
5
Cytoskeletal crosstalk: when three different personalities team up.
Curr Opin Cell Biol. 2015 Feb;32:39-47. doi: 10.1016/j.ceb.2014.10.005. Epub 2014 Nov 15.
7
Intermediate filaments.
Curr Biol. 2021 May 24;31(10):R522-R529. doi: 10.1016/j.cub.2021.04.011.

引用本文的文献

1
Role of Masticatory Force in Modulating Jawbone Immunity and Bone Homeostasis: A Review.
Int J Mol Sci. 2025 May 8;26(10):4478. doi: 10.3390/ijms26104478.
2
Mitochondrial Distribution and Osteocyte Mechanosensitivity.
Curr Osteoporos Rep. 2025 May 22;23(1):22. doi: 10.1007/s11914-025-00918-1.
3
Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation.
Cell Mol Life Sci. 2025 Mar 13;82(1):110. doi: 10.1007/s00018-025-05624-w.
4
Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine.
Adv Sci (Weinh). 2025 Jan;12(3):e2410400. doi: 10.1002/advs.202410400. Epub 2024 Dec 12.
5
Osteocyte Dendrites: How Do They Grow, Mature, and Degenerate in Mineralized Bone?
Cytoskeleton (Hoboken). 2024 Dec 9. doi: 10.1002/cm.21964.
6
Biomechanical Basis for Bone Healing and Osseointegration of Implants in Sinus Grafts.
Clin Implant Dent Relat Res. 2025 Feb;27(1):e13424. doi: 10.1111/cid.13424. Epub 2024 Dec 5.
7
Stiffening symphony of aging: Biophysical changes in senescent osteocytes.
Aging Cell. 2024 Dec;23(12):e14421. doi: 10.1111/acel.14421. Epub 2024 Nov 24.
8
Purinergic signaling through the P2Y2 receptor regulates osteocytes' mechanosensitivity.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202403005. Epub 2024 Aug 30.
9
Effect of viscosity of gelatin methacryloyl-based bioinks on bone cells.
Biofabrication. 2024 Sep 3;16(4). doi: 10.1088/1758-5090/ad6d91.

本文引用的文献

3
Pharmacological Regulation of Primary Cilium Formation Affects the Mechanosensitivity of Osteocytes.
Calcif Tissue Int. 2020 Dec;107(6):625-635. doi: 10.1007/s00223-020-00756-6. Epub 2020 Sep 17.
4
ROCK-II inhibition suppresses impaired mechanobiological responses in early estrogen deficient osteoblasts.
Exp Cell Res. 2020 Nov 1;396(1):112264. doi: 10.1016/j.yexcr.2020.112264. Epub 2020 Sep 6.
5
The mTORC2 Component Rictor Is Required for Load-Induced Bone Formation in Late-Stage Skeletal Cells.
JBMR Plus. 2020 Jun 18;4(7):e10366. doi: 10.1002/jbm4.10366. eCollection 2020 Jul.
6
A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction.
Nat Commun. 2020 Jul 1;11(1):3282. doi: 10.1038/s41467-020-17099-3.
7
TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations.
Bone. 2020 Jul;136:115356. doi: 10.1016/j.bone.2020.115356. Epub 2020 Apr 6.
8
The tubulin code and its role in controlling microtubule properties and functions.
Nat Rev Mol Cell Biol. 2020 Jun;21(6):307-326. doi: 10.1038/s41580-020-0214-3. Epub 2020 Feb 27.
9
Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk.
Nat Commun. 2020 Jan 15;11(1):282. doi: 10.1038/s41467-019-14146-6.
10
Romosozumab: a novel bone anabolic treatment option for osteoporosis?
Wien Med Wochenschr. 2020 Apr;170(5-6):124-131. doi: 10.1007/s10354-019-00721-5. Epub 2019 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验