Lewis Karl J, Yi Xin, Wright Christian S, Pemberton Emily Z, Bullock Whitney A, Thompson William R, Robling Alexander G
Department of Anatomy & Cell Biology Indiana University School of Medicine Indianapolis IN USA.
Department of Physical Therapy Indiana University School of Health & Human Sciences Indianapolis IN USA.
JBMR Plus. 2020 Jun 18;4(7):e10366. doi: 10.1002/jbm4.10366. eCollection 2020 Jul.
Bone relies on mechanical cues to build and maintain tissue composition and architecture. Our understanding of bone cell mechanotransduction continues to evolve, with a few key signaling pathways emerging as vital. Wnt/β-catenin, for example, is essential for proper anabolic response to mechanical stimulation. One key complex that regulates β-catenin activity is the mammalian target of rapamycin complex 2 (mTORc2). mTORc2 is critical for actin cytoskeletal reorganization, an indispensable component in mechanotransduction in certain cell types. In this study, we probed the impact of the mTORc2 signaling pathway in osteocyte mechanotransduction by conditionally deleting the mTORc2 subunit Rictor in Dmp1-expressing cells of C57BL/6 mice. Conditional deletion of the Rictor was achieved using the Dmp1-Cre driver to recombine Rictor floxed alleles. Rictor mutants exhibited a decrease in skeletal properties, as measured by DXA, μCT, and mechanical testing, compared with Cre-negative floxed littermate controls. in vivo axial tibia loading conducted in adult mice revealed a deficiency in the osteogenic response to loading among Rictor mutants. Histological measurements of osteocyte morphology indicated fewer, shorter cell processes in Rictor mutants, which might explain the compromised response to mechanical stimulation. In summary, inhibition of the mTORc2 pathway in late osteoblasts/osteocytes leads to decreased bone mass and mechanically induced bone formation. © 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
骨骼依靠机械信号来构建和维持组织成分及结构。我们对骨细胞机械转导的理解不断发展,一些关键信号通路逐渐显现出至关重要的作用。例如,Wnt/β-连环蛋白对于对机械刺激的适当合成代谢反应至关重要。一种调节β-连环蛋白活性的关键复合物是雷帕霉素复合物2(mTORc2)的哺乳动物靶点。mTORc2对于肌动蛋白细胞骨架重组至关重要,而肌动蛋白细胞骨架重组是某些细胞类型机械转导中不可或缺的组成部分。在本研究中,我们通过有条件地删除C57BL/6小鼠Dmp1表达细胞中的mTORc2亚基Rictor,探究了mTORc2信号通路在骨细胞机械转导中的作用。使用Dmp1-Cre驱动程序重组Rictor的floxed等位基因,实现了Rictor的条件性缺失。与Cre阴性的floxed同窝对照相比,通过双能X线吸收法(DXA)、显微计算机断层扫描(μCT)和力学测试测量,Rictor突变体的骨骼特性有所下降。在成年小鼠中进行的体内轴向胫骨加载显示,Rictor突变体对加载的成骨反应存在缺陷。骨细胞形态的组织学测量表明,Rictor突变体中的细胞突起数量减少且变短,这可能解释了其对机械刺激反应受损的原因。总之,晚期成骨细胞/骨细胞中mTORc2通路的抑制导致骨量减少和机械诱导的骨形成减少。© 2020作者。由Wiley Periodicals, Inc.代表美国骨与矿物质研究学会出版。