Suppr超能文献

具有简化Holling-IV型方案的修正Leslie-Gower捕食-食饵系统的确定性和随机动力学

Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type Ⅳ scheme.

作者信息

Li Lin, Zhao Wencai

机构信息

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Math Biosci Eng. 2021 Mar 24;18(3):2813-2831. doi: 10.3934/mbe.2021143.

Abstract

In this paper, a prey-predator model with modified Leslie-Gower and simplified Holling-type Ⅳ functional responses is proposed to study the dynamic behaviors. For the deterministic system, we analyze the permanence of the system and the stability of the positive equilibrium point. For the stochastic system, we not only prove the existence and uniqueness of global positive solution, but also discuss the persistence in mean and extinction of the populations. In addition, we find that stochastic system has an ergodic stationary distribution under some parameter constraints. Finally, our theoretical results are verified by numerical simulations.

摘要

本文提出了一个具有修正的莱斯利-高尔模型和简化的霍林Ⅳ型功能反应的捕食-食饵模型来研究其动力学行为。对于确定性系统,我们分析了系统的持久性和正平衡点的稳定性。对于随机系统,我们不仅证明了全局正解的存在唯一性,还讨论了种群的均值持久性和灭绝性。此外,我们发现在某些参数约束下随机系统具有遍历平稳分布。最后,通过数值模拟验证了我们的理论结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验