Li Lin, Zhao Wencai
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China.
Math Biosci Eng. 2021 Mar 24;18(3):2813-2831. doi: 10.3934/mbe.2021143.
In this paper, a prey-predator model with modified Leslie-Gower and simplified Holling-type Ⅳ functional responses is proposed to study the dynamic behaviors. For the deterministic system, we analyze the permanence of the system and the stability of the positive equilibrium point. For the stochastic system, we not only prove the existence and uniqueness of global positive solution, but also discuss the persistence in mean and extinction of the populations. In addition, we find that stochastic system has an ergodic stationary distribution under some parameter constraints. Finally, our theoretical results are verified by numerical simulations.
本文提出了一个具有修正的莱斯利-高尔模型和简化的霍林Ⅳ型功能反应的捕食-食饵模型来研究其动力学行为。对于确定性系统,我们分析了系统的持久性和正平衡点的稳定性。对于随机系统,我们不仅证明了全局正解的存在唯一性,还讨论了种群的均值持久性和灭绝性。此外,我们发现在某些参数约束下随机系统具有遍历平稳分布。最后,通过数值模拟验证了我们的理论结果。