Department of Statistics and Operations Research, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
Math Biosci Eng. 2021 Mar 29;18(3):2930-2951. doi: 10.3934/mbe.2021148.
In this paper, we introduce a new form of hybrid censoring sample, that is called COMBINED-UNIFIED (C-U) hybrid sample. In this unified approach, we merge the combined hybrid censoring sampling that considered by Huang and Yang [1] and unified hybrid censoring sampling that considered by Balakrishnan et al. [2]. We apply the C-U hybrid censoring sampling to develop estimation procedures of the unknown parameters of Dagum distribution. The maximum likelihood method is used to estimate the unknown parameters and the asymptotic confidence intervals as well as the bootstrap confidence intervals are obtained. Also, we develop the Bayesian estimation of the unknown parameters of Dagum distribution under the squared error and linear-exponential (LINEX) loss functions. Since the closed forms of the Bayesian estimators are not available, so we encounter some computational difficulties to evaluate the Bayes estimates of the parameters involved in the model such as Tierney and Kadanes procedure as well as Markov Chain Monte Carlo (MCMC) procedure to compute approximate Bayes estimates. In addition, we show the usefulness of the theoretical findings thought some simulation experiments. Finally, a real data set have been analyzed for illustrative purposes of our results.
在本文中,我们引入了一种新的混合删失样本形式,称为 COMBINED-UNIFIED(C-U)混合样本。在这种统一的方法中,我们合并了 Huang 和 Yang [1] 提出的组合混合删失抽样和 Balakrishnan 等人 [2] 提出的统一混合删失抽样。我们应用 C-U 混合删失抽样来开发 Dagum 分布未知参数的估计程序。最大似然法用于估计未知参数,并得到渐近置信区间和自举置信区间。此外,我们还在平方误差和线性指数(LINEX)损失函数下开发了 Dagum 分布未知参数的贝叶斯估计。由于贝叶斯估计的封闭形式不可用,因此我们在评估模型中涉及的参数的贝叶斯估计时会遇到一些计算困难,例如 Tierney 和 Kadanes 过程以及 Markov Chain Monte Carlo(MCMC)过程来计算近似贝叶斯估计。此外,我们通过一些模拟实验展示了理论结果的有用性。最后,为了说明我们的结果,我们分析了一个真实数据集。