Suppr超能文献

基于渐进式 I 型区间 censoring 的 Dagum 分布的贝叶斯估计。

Bayesian estimation for Dagum distribution based on progressive type I interval censoring.

机构信息

Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Department of Statistics, Al-Azhar University, Cairo, Egypt.

出版信息

PLoS One. 2021 Jun 2;16(6):e0252556. doi: 10.1371/journal.pone.0252556. eCollection 2021.

Abstract

In this paper, we consider Dagum distribution which is capable of modeling various shapes of failure rates and aging criteria. Based on progressively type-I interval censoring data, we first obtain the maximum likelihood estimators and the approximate confidence intervals of the unknown parameters of the Dagum distribution. Next, we obtain the Bayes estimators of the parameters of Dagum distribution under the squared error loss (SEL) and balanced squared error loss (BSEL) functions using independent informative gamma and non informative uniform priors for both scale and two shape parameters. A Monte Carlo simulation study is performed to assess the performance of the proposed Bayes estimators with the maximum likelihood estimators. We also compute credible intervals and symmetric 100(1 - τ)% two-sided Bayes probability intervals under the respective approaches. Besides, based on observed samples, Bayes predictive estimates and intervals are obtained using one-and two-sample schemes. Simulation results reveal that the Bayes estimates based on SEL and BSEL performs better than maximum likelihood estimates in terms of bias and MSEs. Besides, credible intervals have smaller interval lengths than confidence interval. Further, predictive estimates based on SEL with informative prior performs better than non-informative prior for both one and two sample schemes. Further, the optimal censoring scheme has been suggested using a optimality criteria. Finally, we analyze a data set to illustrate the results derived.

摘要

本文考虑了 Dagum 分布,它能够对各种形状的失效率和老化标准进行建模。基于逐步Ⅰ型区间删失数据,我们首先得到了 Dagum 分布未知参数的最大似然估计值和近似置信区间。接下来,我们在独立信息 Gamma 和非信息均匀先验下,针对尺度和两个形状参数,在平方误差损失(SEL)和平衡平方误差损失(BSEL)函数下,得到了 Dagum 分布参数的贝叶斯估计值。通过蒙特卡罗模拟研究,我们评估了基于最大似然估计值的拟议贝叶斯估计值的性能。我们还在各自的方法下计算了可信区间和对称的 100(1 - τ)% 双侧贝叶斯概率区间。此外,基于观测样本,我们使用单样本和双样本方案得到了贝叶斯预测估计值和区间。模拟结果表明,在偏差和均方误差方面,基于 SEL 和 BSEL 的贝叶斯估计值比最大似然估计值表现更好。此外,可信区间的区间长度比置信区间小。进一步,对于单样本和双样本方案,基于 SEL 和信息先验的预测估计值都优于非信息先验。此外,我们还使用最优性准则建议了最优的删失方案。最后,我们分析了一个数据集来说明所得结果。

相似文献

5
7
Statistical inference based on generalized Lindley record values.基于广义林德利记录值的统计推断。
J Appl Stat. 2019 Oct 30;47(9):1543-1561. doi: 10.1080/02664763.2019.1683153. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验