Suppr超能文献

基于细胞的聚糖阵列探测人 Siglecs 的结合特异性。

Probing the binding specificities of human Siglecs by cell-based glycan arrays.

机构信息

Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.

Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2026102118.

Abstract

Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6--sulfo)Galβ1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.

摘要

Siglecs 是一类唾液酸结合受体,表达于免疫系统细胞和少数其他细胞类型,能够在识别唾液酸糖缀合物配体后调节免疫细胞功能。虽然人类 Siglecs 主要结合构成唾液酸组的各种类型糖蛋白和糖脂上的唾液酸残基,但它们对复杂糖结构的精细结合特异性以及糖缀合物和蛋白质环境对细胞表面唾液糖结合的识别的贡献尚未完全阐明。在这里,我们生成了一组具有组合性缺失/获得单个唾液酸转移酶基因的同种系人 HEK293 细胞文库,并引入了硫酸转移酶以展示人类唾液酸组,并在细胞表面糖缀合物的天然环境中解析 Siglec 相互作用。我们发现 Siglec-4/7/15 都对唾液酸化的 GalNAc 型 O-聚糖具有独特的结合偏好,但对不同蛋白质序列上呈现的 O-聚糖模式表现出选择性。我们发现硫酸转移酶 CHST1 驱动 Siglec-3/8/7/15 与唾液酸糖的结合,并且硫酸化可以影响对 O-聚糖模式的结合偏好。特别是,发现分支的 Neu5Acα2-3(6--磺酸)Galβ1-4GlcNAc (6'-Su-SLacNAc) 表位是与迟发性阿尔茨海默病相关的 Siglec-3 (CD33) 结合的表位。人类唾液酸组的细胞展示提供了一个通用的发现平台,能够解析 Siglec 聚糖相互作用组和其他唾液酸结合蛋白的遗传和生物合成基础。

相似文献

4
Putting a cap on the glycome: Dissecting human sialyltransferase functions.聚糖封顶:解析人类唾液酸转移酶功能。
Carbohydr Res. 2024 Oct;544:109242. doi: 10.1016/j.carres.2024.109242. Epub 2024 Aug 13.
5
Siglec Ligands.唾液酸结合免疫球蛋白样凝集素配体
Cells. 2021 May 20;10(5):1260. doi: 10.3390/cells10051260.
7
Advances in understanding and exploiting Siglec-glycan interactions.深入了解并充分利用 Siglec-糖复合物相互作用。
Curr Opin Chem Biol. 2024 Jun;80:102454. doi: 10.1016/j.cbpa.2024.102454. Epub 2024 Apr 16.

引用本文的文献

1
Unraveling the glyco-immunity nexus in pancreatic cancer.解析胰腺癌中的糖免疫关系
Mol Cancer. 2025 Aug 4;24(1):211. doi: 10.1186/s12943-025-02417-4.

本文引用的文献

4
Genetic glycoengineering in mammalian cells.哺乳动物细胞中的遗传糖基工程。
J Biol Chem. 2021 Jan-Jun;296:100448. doi: 10.1016/j.jbc.2021.100448. Epub 2021 Feb 20.
7
Cell-Based Glycan Arrays-A Practical Guide to Dissect the Human Glycome.基于细胞的聚糖芯片:解析人类糖组的实用指南。
STAR Protoc. 2020 Jun 3;1(1):100017. doi: 10.1016/j.xpro.2020.100017. eCollection 2020 Jun 19.
8
Global view of human protein glycosylation pathways and functions.人类蛋白糖基化途径和功能的全球视图。
Nat Rev Mol Cell Biol. 2020 Dec;21(12):729-749. doi: 10.1038/s41580-020-00294-x. Epub 2020 Oct 21.
10
Siglecs at the Host-Pathogen Interface.宿主-病原体界面上的 Siglecs。
Adv Exp Med Biol. 2020;1204:197-214. doi: 10.1007/978-981-15-1580-4_8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验