Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
Carbohydr Res. 2024 Oct;544:109242. doi: 10.1016/j.carres.2024.109242. Epub 2024 Aug 13.
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
人类糖链的末端带有唾液酸,这些九碳糖介导了糖链的许多生物学功能和相互作用。结构多样的唾液酸帽将人类细胞标记为自身,它们形成 Siglec 免疫受体和其他糖结合蛋白的配体。唾液酸使宿主能够与人类微生物组相互作用,许多人类病原体利用唾液酸感染宿主细胞。在包括炎症和癌症在内的每一种主要人类疾病中都可以发现带有唾液酸的糖链(糖脂)的改变。人类细胞高尔基体中的 20 种唾液酸转移酶家族成员将唾液酸转移到不同的聚糖和糖缀合物上。唾液酸转移酶催化特定的反应来形成独特的唾液酸糖脂,或者它们具有共同的功能,多个家族成员产生相同的唾液酸糖脂产物。此外,一些唾液酸转移酶竞争相同的糖基供体,但会产生不同的唾液酸帽。这些冗余和竞争的功能使得难以理解人类唾液酸转移酶在生物学中的个体作用,并揭示其对病理生物学过程的特定贡献。最近的研究结果表明,唾液酸转移酶的个体功能、它们之间的相互作用以及高尔基体局部环境的信号共同形成了唾液酸糖脂生物合成的合成规则。在这篇综述中,我们讨论了人类唾液酸转移酶家族的当前结构和功能理解,并回顾了最近能够剖析单个唾液酸转移酶活性的技术进展。