Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
Nat Commun. 2021 Apr 23;12(1):2397. doi: 10.1038/s41467-021-22651-w.
Gene targeting studies in primary human islets could advance our understanding of mechanisms driving diabetes pathogenesis. Here, we demonstrate successful genome editing in primary human islets using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9). CRISPR-based targeting efficiently mutated protein-coding exons, resulting in acute loss of islet β-cell regulators, like the transcription factor PDX1 and the K channel subunit KIR6.2, accompanied by impaired β-cell regulation and function. CRISPR targeting of non-coding DNA harboring type 2 diabetes (T2D) risk variants revealed changes in ABCC8, SIX2 and SIX3 expression, and impaired β-cell function, thereby linking regulatory elements in these target genes to T2D genetic susceptibility. Advances here establish a paradigm for genetic studies in human islet cells, and reveal regulatory and genetic mechanisms linking non-coding variants to human diabetes risk.
利用成簇规律间隔短回文重复序列(CRISPR)和 CRISPR 相关蛋白 9(Cas9)对原代人胰岛进行基因靶向研究,可以深入了解驱动糖尿病发病机制的相关机制。在此,我们证明了使用 CRISPR 成功编辑原代人胰岛中的基因。基于 CRISPR 的靶向作用可以有效地突变编码蛋白的外显子,导致胰岛β细胞调节因子(如转录因子 PDX1 和 K 通道亚基 KIR6.2)的急性缺失,同时伴随着β细胞调节和功能受损。针对携带 2 型糖尿病(T2D)风险变异的非编码 DNA 的 CRISPR 靶向作用揭示了 ABCC8、SIX2 和 SIX3 表达的变化以及β细胞功能受损,从而将这些靶基因中的调节元件与 T2D 遗传易感性联系起来。本研究进展为人类胰岛细胞的遗传研究建立了范例,并揭示了将非编码变异与人类糖尿病风险联系起来的调节和遗传机制。