Hoang Giang, Zhang Cissy, Attarwala Nabeel, Jung Jin G, Cooper Arthur J L, Le Anne
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Anal Biochem. 2021 Nov 1;632:114206. doi: 10.1016/j.ab.2021.114206. Epub 2021 Apr 22.
The use of metabolomic technologies and stable isotope labeling recently enabled us to discover an unexpected role of N-acetyl-aspartyl-glutamate (NAAG): NAAG is a glutamate reservoir for cancer cells. In the current study, we first found that glucose carbon contributes to the formation of NAAG and its precursors via glycolysis, demonstrating the existence of a glucose-NAAG-glutamate cycle in cancer cells. Second, we found that glucose carbon and, unexpectedly, glutamine carbon contribute to the formation of lactate via glutaminolysis. Importantly, lactate carbon can be incorporated into glucose via gluconeogenesis, demonstrating the existence of a glutamine-lactate-glucose cycle. While a glucose-lactate-glucose cycle was expected, the finding of a glutamine-lactate-glucose cycle was unforeseen. And third, we discovered that glutamine carbon is incorporated into γ-aminobutyric acid (GABA), revealing a glutamate-GABA-succinate cycle. Thus, NAAG, lactate, and GABA can play important roles as storage molecules for glutamate, glucose, and succinate carbon in oncogenic MYC-transformed P493 lymphoma B cells (MYC-ON cells) but not in non-oncogenic MYC-OFF cells. Altogether, examining the isotopic labeling patterns of metabolites derived from labeled C-glucose or CN-glutamine helped reveal the presence of what we have named "metabolic reservoir cycles" in oncogenic cells.
代谢组学技术和稳定同位素标记的应用最近使我们发现了N-乙酰天门冬氨酰谷氨酸(NAAG)出人意料的作用:NAAG是癌细胞的谷氨酸储备库。在本研究中,我们首先发现葡萄糖碳通过糖酵解作用有助于NAAG及其前体的形成,这表明癌细胞中存在葡萄糖-NAAG-谷氨酸循环。其次,我们发现葡萄糖碳以及出乎意料的谷氨酰胺碳通过谷氨酰胺分解作用有助于乳酸的形成。重要的是,乳酸碳可以通过糖异生作用掺入葡萄糖中,这表明存在谷氨酰胺-乳酸-葡萄糖循环。虽然葡萄糖-乳酸-葡萄糖循环是意料之中的,但谷氨酰胺-乳酸-葡萄糖循环的发现却出乎意料。第三,我们发现谷氨酰胺碳掺入γ-氨基丁酸(GABA)中,揭示了谷氨酸-GABA-琥珀酸循环。因此,在致癌性MYC转化的P493淋巴瘤B细胞(MYC-ON细胞)中,NAAG、乳酸和GABA可作为谷氨酸、葡萄糖和琥珀酸碳的储存分子发挥重要作用,但在非致癌性MYC-OFF细胞中则不然。总之,检查源自标记的C-葡萄糖或C-15N-谷氨酰胺的代谢物的同位素标记模式有助于揭示致癌细胞中我们所称的“代谢储备循环”的存在。