ETH Zurich, Institute of Microbiology, Zurich, Switzerland.
ETH Zurich, Institute of Microbiology, Zurich, Switzerland.
J Biol Chem. 2021 Jan-Jun;296:100682. doi: 10.1016/j.jbc.2021.100682. Epub 2021 May 1.
Methylofuran (MYFR) is a formyl-carrying coenzyme essential for the oxidation of formaldehyde in most methylotrophic bacteria. In Methylorubrum extorquens, MYFR contains a large and branched polyglutamate side chain of up to 24 glutamates. These glutamates play an essential role in interfacing the coenzyme with the formyltransferase/hydrolase complex, an enzyme that generates formate. To date, MYFR has not been identified in other methylotrophs, and it is unknown whether its structural features are conserved. Here, we examined nine bacterial strains for the presence and structure of MYFR using high-resolution liquid chromatography-mass spectrometry (LC-MS). Two of the strains produced MYFR as present in M. extorquens, while a modified MYFR containing tyramine instead of tyrosine in its core structure was detected in six strains. When M. extorquens was grown in the presence of tyramine, the compound was readily incorporated into MYFR, indicating that the biosynthetic enzymes are unable to discriminate tyrosine from tyramine. Using gene deletions in combination with LC-MS analyses, we identified three genes, orf5, orfY, and orf17 that are essential for MYFR biosynthesis. Notably, the orfY and orf5 mutants accumulated short MYFR intermediates with only one and two glutamates, respectively, suggesting that these enzymes catalyze glutamate addition. Upon homologous overexpression of orf5, a drastic increase in the number of glutamates in MYFR was observed (up to 40 glutamates), further corroborating the function of Orf5 as a glutamate ligase. We thus renamed OrfY and Orf5 to MyfA and MyfB to highlight that these enzymes are specifically involved in MYFR biosynthesis.
甲酰呋喃 (MYFR) 是一种含甲酰基的辅酶,对于大多数甲基营养型细菌中甲醛的氧化至关重要。在甲基杆菌属 (Methylorubrum extorquens) 中,MYFR 含有一个多达 24 个谷氨酸残基的大而分支的聚谷氨酸侧链。这些谷氨酸残基在将辅酶与甲酰基转移酶/水解酶复合物(一种生成甲酸盐的酶)相互作用中发挥着重要作用。迄今为止,在其他甲基营养菌中尚未发现 MYFR,其结构特征是否保守尚不清楚。在这里,我们使用高分辨率液相色谱-质谱法 (LC-MS) 检查了九种细菌菌株中 MYFR 的存在和结构。其中两种菌株产生了与 M. extorquens 中相同的 MYFR,而在六种菌株中检测到了含有酪氨酸核心结构的酪氨酸的修饰型 MYFR。当 M. extorquens 在存在酪氨酸的情况下生长时,该化合物很容易被掺入到 MYFR 中,表明生物合成酶无法区分酪氨酸和酪氨酸。通过使用基因缺失与 LC-MS 分析相结合,我们鉴定了三个基因,orf5、orfY 和 orf17,它们对于 MYFR 生物合成是必不可少的。值得注意的是,orfY 和 orf5 突变体分别积累了仅含有一个和两个谷氨酸的短 MYFR 中间体,表明这些酶催化谷氨酸的添加。在 orf5 的同源过表达后,观察到 MYFR 中的谷氨酸数量急剧增加(多达 40 个谷氨酸),进一步证实了 Orf5 作为谷氨酸连接酶的功能。因此,我们将 orfY 和 orf5 分别更名为 MyfA 和 MyfB,以突出这些酶专门参与 MYFR 生物合成。