Suppr超能文献

通过对二甲基甘氨酸脱氢酶的改造,PA1中实现了甘氨酸甜菜碱代谢。

Glycine betaine metabolism is enabled in PA1 by alterations to dimethylglycine dehydrogenase.

作者信息

Hying Zachary T, Miller Tyler J, Loh Chin Yi, Bazurto Jannell V

机构信息

Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA.

Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA.

出版信息

Appl Environ Microbiol. 2024 Jul 24;90(7):e0209023. doi: 10.1128/aem.02090-23. Epub 2024 Mar 27.

Abstract

Low nutrient availability is a key characteristic of the phyllosphere (the aerial surface of plants). Phyllospheric bacteria utilize a wide array of carbon sources generated by plant hosts. Glycine betaine (GB) is a plant-derived compound that can be metabolized by certain members of the phyllosphere microbiota. Metabolism of glycine betaine generates formaldehyde, an intermediate of methylotrophic metabolism, leading us to investigate how the ubiquitous plant colonizing bacterium PA1 might metabolize GB encountered in its native environment. PA1 cannot utilize GB as a sole carbon source. Through suppressor mutation analysis, we show that PA1 encodes a conserved GB utilization pathway that can be activated by single point mutations conferring GB utilization as a carbon source. We identified the gene cluster encoding the GB catabolic enzymes and found that gene expression was induced in the presence of GB. We show that utilization of GB is conserved among representative species and generates the one-carbon metabolism intermediate formaldehyde, which utilizes as a source of energy. Our results support a model where suppressor mutations in or () prevent the degradation of the dimethylglycine dehydrogenase subunit DgcB by the membrane integral protease FtsH, conferring the ability to utilize GB by either (i) restoring stable membrane topology of DgcB or (ii) decreasing FtsH protease activity, respectively. Both mutations alleviate the bottleneck at the second step of GB degradation catalyzed by DgcAB.IMPORTANCEOvercoming low nutrient availability is a challenge many bacteria encounter in the environment. Facultative methylotrophs are able to utilize one-carbon and multi-carbon compounds as carbon and energy sources. The utilization of plant-derived glycine betaine (GB) represents a possible source of multi-carbon and one-carbon substrates. The metabolism of glycine betaine produces formaldehyde and glycine, which may be used simultaneously by facultative methylotrophs. However, the genes required for the utilization of GB in the ubiquitous plant-associated bacterium have yet to be identified or described. Our work identifies and validates the genes required for glycine betaine metabolism in and shows that it directly intersects with methylotrophic metabolism through the production of formaldehyde.

摘要

低养分可利用性是植物叶际(植物地上表面)的一个关键特征。叶际细菌利用植物宿主产生的多种碳源。甘氨酸甜菜碱(GB)是一种植物衍生化合物,可被叶际微生物群的某些成员代谢。甘氨酸甜菜碱的代谢产生甲醛,这是甲基营养代谢的一种中间产物,促使我们研究普遍存在的植物定殖细菌PA1如何代谢其在自然环境中遇到的GB。PA1不能利用GB作为唯一碳源。通过抑制突变分析,我们表明PA1编码一条保守的GB利用途径,该途径可通过赋予GB作为碳源利用能力的单点突变而被激活。我们鉴定了编码GB分解代谢酶的基因簇,并发现基因表达在GB存在时被诱导。我们表明GB的利用在代表性物种中是保守的,并产生一碳代谢中间产物甲醛,其用作能量来源。我们的结果支持一种模型,即或()中的抑制突变通过膜整合蛋白酶FtsH防止二甲基甘氨酸脱氢酶亚基DgcB的降解,分别通过(i)恢复DgcB的稳定膜拓扑结构或(ii)降低FtsH蛋白酶活性赋予利用GB的能力。这两种突变都缓解了由DgcAB催化的GB降解第二步的瓶颈。

重要性

克服低养分可利用性是许多细菌在环境中遇到的一个挑战。兼性甲基营养菌能够利用一碳和多碳化合物作为碳源和能源。植物衍生的甘氨酸甜菜碱(GB)的利用代表了多碳和一碳底物的一种可能来源。甘氨酸甜菜碱的代谢产生甲醛和甘氨酸,兼性甲基营养菌可能同时利用它们。然而,普遍存在的植物相关细菌中利用GB所需的基因尚未被鉴定或描述。我们工作鉴定并验证了中甘氨酸甜菜碱代谢所需的基因,并表明它通过甲醛的产生与甲基营养代谢直接交叉。

相似文献

5
Choline degradation in : identification of sources of formaldehyde.胆碱降解物:甲醛来源的鉴定。
J Bacteriol. 2024 Apr 18;206(4):e0008124. doi: 10.1128/jb.00081-24. Epub 2024 Mar 19.
10
Methylobacterium extorquens: methylotrophy and biotechnological applications.甲基杆菌:甲基营养型和生物技术应用。
Appl Microbiol Biotechnol. 2015 Jan;99(2):517-34. doi: 10.1007/s00253-014-6240-3. Epub 2014 Nov 30.

本文引用的文献

3
Characterization of FtsH Essentiality in Genetic Suppression.FtsH在基因抑制中的必需性表征
Front Genet. 2021 Apr 27;12:659220. doi: 10.3389/fgene.2021.659220. eCollection 2021.
4
The family of sarcosine oxidases: Same reaction, different products.肌氨酸氧化酶家族:相同的反应,不同的产物。
Arch Biochem Biophys. 2021 Jun 15;704:108868. doi: 10.1016/j.abb.2021.108868. Epub 2021 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验