Analytical Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, United States.
Analytical Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, United States.
J Pharm Sci. 2021 Aug;110(8):2904-2915. doi: 10.1016/j.xphs.2021.04.010. Epub 2021 Apr 21.
Site-specific cysteine engineering, along with other genetic mutations, is broadly implemented in bispecific antibodies (bsAb). Thus far, homodimer, half hole antibody, one-light chain mispaired and light chain swapped variants have been reported as chain-pairing variants for the asymmetric IgG-like bispecific antibodies. Here we report a novel mispair in which the C3 engineered cysteine on the hole heavy chain (HC) of a knob-into-hole (KiH) bsAb is linked to the engineered cysteine in C through a disulfide bond, forming a LHL species in a bsAb construct. Due to its impact on bioactivity, it is critical to implement an analytical strategy to monitor this CQA and mitigate risk for the future products. A set of orthogonal physicochemical assays that include hydrophobic interaction chromatography (HIC), capillary electrophoresis sodium dodecyl sulfate (CE-SDS), reverse phase liquid chromatography ultra-performance chromatography mass spectrometry (RP-UPLC MS) and disulfide bond mapping have been utilized to monitor and characterize this chain-pairing impurity for manufacturing process control and product release. Our data shows the LHL mispair in condition medium (CM) is approximately 1.3 - 1.9%. LambdaFabSelect affinity chromatography removes two major chain-pairing variants in CM - i.e. the hole-hole homodimer and hole half-antibody, while retaining the LHL species. Process improvement in Capto Q (anion exchange) and HS50 (cation exchange) chromatography steps removes LHL to as low as 0.2% in the final product. We have demonstrated an orthogonal analytical methodology that is capable of characterizing and monitoring bsAb mispairing, suitable for use in manufacturing process control and product release, and can be potentially implemented for similar bsAb constructs with engineered disulfide bonds.
定点半胱氨酸工程改造,以及其他遗传突变,广泛应用于双特异性抗体(bsAb)中。迄今为止,已报道同源二聚体、半孔抗体、单条轻链错配和轻链交换变体作为不对称 IgG 样双特异性抗体的链配对变体。在这里,我们报告了一种新的错配,其中孔重链(HC)上的 C3 工程化半胱氨酸与通过二硫键连接的 C 处的工程化半胱氨酸相连,在 bsAb 构建体中形成 LHL 物种。由于其对生物活性的影响,实施分析策略来监测这个关键质量属性(CQA)并为未来的产品降低风险至关重要。我们使用了一组正交的物理化学分析方法,包括疏水相互作用色谱(HIC)、毛细管电泳十二烷基硫酸钠(CE-SDS)、反相液相色谱超高效色谱质谱(RP-UPLC MS)和二硫键图谱,来监测和表征这种链配对杂质,以进行制造过程控制和产品放行。我们的数据显示,在条件培养基(CM)中,LHL 错配约为 1.3-1.9%。LambdaFabSelect 亲和色谱去除了 CM 中的两种主要链配对变体,即孔孔同源二聚体和孔半抗体,同时保留了 LHL 物种。Capto Q(阴离子交换)和 HS50(阳离子交换)色谱步骤的工艺改进将 LHL 最终产品中的含量降低至低至 0.2%。我们已经证明了一种正交分析方法,该方法能够对 bsAb 错配进行特征描述和监测,适用于制造过程控制和产品放行,并且可以潜在地应用于具有工程化二硫键的类似 bsAb 构建体。