iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
Biotechnol Adv. 2021 Jul-Aug;49:107755. doi: 10.1016/j.biotechadv.2021.107755. Epub 2021 Apr 22.
Research in stem cells paved the way to an enormous amount of knowledge, increasing expectations on cardio regenerative therapeutic approaches in clinic. While the first generation of clinical trials using cell-based therapies in the heart were performed with bone marrow and adipose tissue derived mesenchymal stem cells, second generation cell therapies moved towards the use of cardiac-committed cell populations, including cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes. Despite all these progresses, translating the aptitudes of R&D and pre-clinical data into effective clinical treatments is still highly challenging, partially due to the demanding regulatory and safety concerns but also because of the lack of knowledge on the regenerative mechanisms of action of these therapeutic products. Thus, the need of analytical methodologies that enable a complete characterization of such complex products and a deep understanding of their therapeutic effects, at the cell and molecular level, is imperative to overcome the hurdles of these advanced therapies. Omics technologies, such as proteomics and glyco(proteo)mics workflows based on state of the art mass-spectrometry, have prompted some major breakthroughs, providing novel data on cell biology and a detailed assessment of cell based-products applied in cardiac regeneration strategies. These advanced 'omics approaches, focused on the profiling of protein and glycan signatures are excelling the identification and characterization of cell populations under study, namely unveiling pluripotency and differentiation markers, as well as paracrine mechanisms and signaling cascades involved in cardiac repair. The leading knowledge generated is supporting a more rational therapy design and the rethinking of challenges in Advanced Therapy Medicinal Products development. Herein, we review the most recent methodologies used in the fields of proteomics, glycoproteomics and glycomics and discuss their impact on the study of cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes biology. How these discoveries will impact the speed up of novel therapies for cardiovascular diseases is also addressed.
干细胞研究为大量知识铺平了道路,增加了人们对心脏再生治疗方法的临床期望。虽然第一代临床试验使用基于细胞的疗法来治疗心脏,使用的是骨髓和脂肪组织来源的间充质干细胞,但第二代细胞疗法则转向使用心脏定向的细胞群体,包括心脏祖细胞和多能干细胞衍生的心肌细胞。尽管取得了所有这些进展,但将研发和临床前数据的能力转化为有效的临床治疗仍然极具挑战性,部分原因是监管和安全问题的要求很高,但也因为缺乏对这些治疗产品再生作用机制的了解。因此,需要分析方法来全面描述这些复杂产品,并深入了解它们在细胞和分子水平上的治疗效果,这对于克服这些先进疗法的障碍至关重要。组学技术,如基于最先进的质谱技术的蛋白质组学和糖蛋白质组学工作流程,已经取得了一些重大突破,为细胞生物学提供了新的数据,并对应用于心脏再生策略的基于细胞的产品进行了详细评估。这些先进的“组学”方法,侧重于蛋白质和聚糖特征谱的分析,在鉴定和描述研究中的细胞群体方面表现出色,即揭示多能性和分化标志物,以及涉及心脏修复的旁分泌机制和信号级联。所产生的主要知识支持更合理的治疗设计,并重新思考先进治疗药物产品开发中的挑战。本文综述了蛋白质组学、糖蛋白质组学和糖组学领域中使用的最新方法,并讨论了它们对心脏祖细胞和多能干细胞衍生的心肌细胞生物学研究的影响。这些发现将如何影响心血管疾病新型疗法的加速也将得到讨论。