Suppr超能文献

在植物体内生产可生物降解聚酯前体 2-吡喃酮-4,6-二羧酸(PDC):通过附加值联产来提高生物质的降解性。

In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product.

机构信息

Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.

Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.

出版信息

Metab Eng. 2021 Jul;66:148-156. doi: 10.1016/j.ymben.2021.04.011. Epub 2021 Apr 22.

Abstract

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.

摘要

2-吡喃酮-4,6-二羧酸(PDC)是一种化学稳定的中间产物,在细菌对木质素的微生物降解过程中自然产生,是各种生物材料和聚酯(如可生物降解塑料)的有前途的构建块。缺乏化学合成方法阻碍了 PDC 的大规模利用,最近出现了用于其生物合成的代谢工程方法。在这项研究中,我们展示了一种通过植物作为绿色工厂操纵莽草酸途径生产 PDC 的策略。在烟草叶片中,我们首先表明,瞬时表达细菌反馈抗性 3-脱氧-D-阿拉伯庚酮糖 7-磷酸合酶(AroG)和 3-脱氢莽草酸脱水酶(QsuB)可产生高浓度的原儿茶酸(PCA),而当共表达 PCA 4,5-加双氧酶(PmdAB)和 4-羧基-2-羟甲基戊烯二酸-6-半醛脱氢酶(PmdC)时,PCA 可有效转化为 PDC,这些酶来自 Comamonas testosteroni。我们验证了在含有 QsuB 基因的遗传背景下,拟南芥中 AroG 的稳定表达可提高植物生物量中的 PCA 含量,推测是通过增加莽草酸途径的碳通量。此外,将 AroG 和 PDC 生物合成基因(PmdA、PmdB 和 PmdC)引入拟南芥 QsuB 背景中,或将包含五个基因(AroG、QsuB、PmdA、PmdB 和 PmdC)的构建体堆叠到野生型植物中,可使植物生物量中的 PDC 产量分别达到约 1%和 3%干重。与表达 QsuB 的植物的先前研究一致,所有产生 PDC 的品系的茎木质素含量均明显降低。由于细胞壁对酶解的抗性降低,这种低木质素特性伴随着生物量糖化效率的提高。重要的是,大多数转基因系的生物量产量没有降低。因此,我们得出结论,通过构建从头开始的 PDC 途径对植物进行工程改造,为生物量提供了一种附加值的副产物,同时提高了生物量质量,以提供可发酵糖。将该策略应用于生物能源作物,有可能支持利用木质纤维素生物质原料生产 PDC 的现有微生物发酵方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验