Suppr超能文献

表达一种细菌的 3-脱氢莽草酸脱水酶(QsuB)可降低柳枝稷(Panicum virgatum L.)中的木质素含量,提高生物质糖化效率。

Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).

机构信息

Joint BioEnergy Institute, Emeryville, CA, 94608, USA.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

出版信息

BMC Plant Biol. 2021 Jan 21;21(1):56. doi: 10.1186/s12870-021-02842-9.

Abstract

BACKGROUND

Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading.

RESULTS

The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene (pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process.

CONCLUSION

This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.

摘要

背景

木质素沉积在植物细胞壁中,会对生物质转化为先进的生物制品产生负面影响。因此,人们强烈希望开发木质素含量降低或木质素结构改变的生物能源作物。生物能源作物的另一个理想特性是能够积累新型生物制品,这将增强经济可持续生物精炼厂的发展。正如在模式植物拟南芥中所证明的那样,在植物中表达 3-脱氢莽草酸脱水酶为降低木质素含量和过量生产适合生物升级的增值代谢副产物(即原儿茶酸)提供了潜力。

结果

来自谷氨酸棒杆菌的 3-脱氢莽草酸脱水酶 QsuB 利用来自甘蔗的 O-甲基转移酶基因(pShOMT)的茎特异性启动子在生物能源作物柳枝稷(Panicum virgatum L.)中表达。在携带 pShOMT::GUS 融合构建体的植物的茎节点中观察到β-葡糖苷酸酶(GUS)活性的原位后,验证了 pShOMT 的活性。在受控生长条件下,与对照植物相比,含有 pShOMT::QsuB 构建体的工程化柳枝稷系显示出木质素含量降低、生物质糖化效率提高和积累更多原儿茶酸。试图在组成型启动子 pZmUbi-1 的控制下生成携带 QsuB 基因的转基因柳枝稷系是不成功的,这表明在植物再生过程中外源 QsuB 表达可能与毒性问题有关。

结论

本研究验证了从模式植物到柳枝稷的 QsuB 工程方法的转移。我们已经证明了两个重要性状的表达发生了改变:木质素含量和副产物的积累。我们发现,在将该策略应用于其他生物能源作物时,应仔细考虑启动子选择来驱动 QsuB 表达。正在进行工程化 QsuB 柳枝稷的田间试验,以评估引入性状的性能和转基因植物的农艺性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验