Suppr超能文献

COVID-19 试验图谱:COVID-19 临床试验的关联图谱。

COVID-19 trial graph: a linked graph for COVID-19 clinical trials.

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

J Am Med Inform Assoc. 2021 Aug 13;28(9):1964-1969. doi: 10.1093/jamia/ocab078.

Abstract

OBJECTIVE

Clinical trials are an essential part of the effort to find safe and effective prevention and treatment for COVID-19. Given the rapid growth of COVID-19 clinical trials, there is an urgent need for a better clinical trial information retrieval tool that supports searching by specifying criteria, including both eligibility criteria and structured trial information.

MATERIALS AND METHODS

We built a linked graph for registered COVID-19 clinical trials: the COVID-19 Trial Graph, to facilitate retrieval of clinical trials. Natural language processing tools were leveraged to extract and normalize the clinical trial information from both their eligibility criteria free texts and structured information from ClinicalTrials.gov. We linked the extracted data using the COVID-19 Trial Graph and imported it to a graph database, which supports both querying and visualization. We evaluated trial graph using case queries and graph embedding.

RESULTS

The graph currently (as of October 5, 2020) contains 3392 registered COVID-19 clinical trials, with 17 480 nodes and 65 236 relationships. Manual evaluation of case queries found high precision and recall scores on retrieving relevant clinical trials searching from both eligibility criteria and trial-structured information. We observed clustering in clinical trials via graph embedding, which also showed superiority over the baseline (0.870 vs 0.820) in evaluating whether a trial can complete its recruitment successfully.

CONCLUSIONS

The COVID-19 Trial Graph is a novel representation of clinical trials that allows diverse search queries and provides a graph-based visualization of COVID-19 clinical trials. High-dimensional vectors mapped by graph embedding for clinical trials would be potentially beneficial for many downstream applications, such as trial end recruitment status prediction and trial similarity comparison. Our methodology also is generalizable to other clinical trials.

摘要

目的

临床试验是寻找 COVID-19 安全有效预防和治疗方法的努力的重要组成部分。鉴于 COVID-19 临床试验的快速增长,迫切需要更好的临床试验信息检索工具,该工具支持通过指定标准进行搜索,包括资格标准和结构化试验信息。

材料与方法

我们构建了一个注册 COVID-19 临床试验的链接图:COVID-19 试验图,以方便检索临床试验。利用自然语言处理工具从资格标准的自由文本和 ClinicalTrials.gov 的结构化信息中提取和规范化临床试验信息。我们使用 COVID-19 试验图链接提取的数据,并将其导入图形数据库,该数据库支持查询和可视化。我们使用案例查询和图嵌入评估了试验图。

结果

该图目前(截至 2020 年 10 月 5 日)包含 3392 项注册 COVID-19 临床试验,有 17480 个节点和 65236 个关系。案例查询的手动评估发现,从资格标准和试验结构化信息中检索相关临床试验具有很高的精度和召回分数。我们通过图嵌入观察到临床试验中的聚类,这也优于基线(0.870 对 0.820)在评估试验是否能够成功完成招募。

结论

COVID-19 试验图是临床试验的一种新表示形式,它允许进行多种搜索查询,并提供 COVID-19 临床试验的基于图的可视化。临床试验的图嵌入映射的高维向量可能对许多下游应用有益,例如试验结束时的招募状态预测和试验相似性比较。我们的方法也适用于其他临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/683e/8363811/97c520749973/ocab078f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验