Suppr超能文献

临床试验入组率预测。

Prediction of clinical trial enrollment rates.

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States of America.

Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America.

出版信息

PLoS One. 2022 Feb 24;17(2):e0263193. doi: 10.1371/journal.pone.0263193. eCollection 2022.

Abstract

Clinical trials represent a critical milestone of translational and clinical sciences. However, poor recruitment to clinical trials has been a long standing problem affecting institutions all over the world. One way to reduce the cost incurred by insufficient enrollment is to minimize initiating trials that are most likely to fall short of their enrollment goal. Hence, the ability to predict which proposed trials will meet enrollment goals prior to the start of the trial is highly beneficial. In the current study, we leveraged a data set extracted from ClinicalTrials.gov that consists of 46,724 U.S. based clinical trials from 1990 to 2020. We constructed 4,636 candidate predictors based on data collected by ClinicalTrials.gov and external sources for enrollment rate prediction using various state-of-the-art machine learning methods. Taking advantage of a nested time series cross-validation design, our models resulted in good predictive performance that is generalizable to future data and stable over time. Moreover, information content analysis revealed the study design related features to be the most informative feature type regarding enrollment. Compared to the performance of models built with all features, the performance of models built with study design related features is only marginally worse (AUC = 0.78 ± 0.03 vs. AUC = 0.76 ± 0.02). The results presented can form the basis for data-driven decision support systems to assess whether proposed clinical trials would likely meet their enrollment goal.

摘要

临床试验代表着转化和临床科学的一个重要里程碑。然而,临床试验招募不足是一个长期存在的问题,影响着世界各地的机构。减少因招募不足而产生的成本的一种方法是尽量减少启动最有可能无法达到招募目标的试验。因此,在试验开始之前预测哪些提议的试验将达到招募目标的能力是非常有益的。在本研究中,我们利用了从 ClinicalTrials.gov 提取的数据集,该数据集包含了 1990 年至 2020 年来自美国的 46724 项临床试验。我们根据 ClinicalTrials.gov 和外部来源收集的数据构建了 4636 个候选预测因子,用于使用各种最先进的机器学习方法预测入组率。利用嵌套时间序列交叉验证设计,我们的模型产生了良好的预测性能,可推广到未来的数据,并随时间保持稳定。此外,信息内容分析表明,与研究设计相关的特征是关于入组的最具信息量的特征类型。与使用所有特征构建的模型相比,使用与研究设计相关的特征构建的模型的性能仅略有下降(AUC=0.78±0.03 与 AUC=0.76±0.02)。所呈现的结果可以为数据驱动的决策支持系统提供基础,以评估拟议的临床试验是否有可能达到其招募目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca7c/8870517/5171c8947151/pone.0263193.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验