Suppr超能文献

一种公共卫生的系统方法——人为因素分析与分类系统在公共卫生及新冠疫情中的新应用

A systematic approach to public health - Novel application of the human factors analysis and classification system to public health and COVID-19.

作者信息

Bickley Steve J, Torgler Benno

机构信息

School of Economics and Finance, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia.

Centre for Behavioural Economics, Society and Technology (BEST), 2 George St, Brisbane, QLD 4000, Australia.

出版信息

Saf Sci. 2021 Aug;140:105312. doi: 10.1016/j.ssci.2021.105312. Epub 2021 Apr 18.

Abstract

In this article, we argue for a novel adaptation of the Human Factors Analysis and Classification System (HFACS) to incidence prevention in the public health and in particular, during and in response to COVID-19. HFACS is a framework of causal categories of human errors typically applied for systematic retrospective incident analysis in high-risk domains. By leveraging this approach proactively, appropriate, and targeted measures can be quickly identified and established to mitigate potential errors at different levels within the public health system (from tertiary and secondary healthcare workers to primary public health officials, regulators, and policymakers).

摘要

在本文中,我们主张对人为因素分析与分类系统(HFACS)进行一种新颖的调整,以用于公共卫生领域的事件预防,特别是在新冠疫情期间以及应对新冠疫情时。HFACS是一个人为错误因果类别的框架,通常用于高风险领域的系统性回顾性事件分析。通过积极运用这种方法,可以迅速确定并制定适当且有针对性的措施,以减轻公共卫生系统内不同层面(从三级和二级医护人员到基层公共卫生官员、监管机构和政策制定者)的潜在错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1054/8053242/cf65c6444ca9/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验