Suppr超能文献

强烈呼气事件产生的蒸发气溶胶云团湍流扩散的直接数值模拟。

Direct numerical simulation of turbulent dispersion of evaporative aerosol clouds produced by an intense expiratory event.

作者信息

Fabregat Alexandre, Gisbert Ferran, Vernet Anton, Ferré Josep Anton, Mittal Ketan, Dutta Som, Pallarès Jordi

机构信息

Department d'Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain.

Sidney Lu Mechanical Engineering Building, University of Illinois at Urbana-Champaign, 1206 W. Green St., MC 244, Urbana, Illinois 61801, USA.

出版信息

Phys Fluids (1994). 2021 Mar;33(3):033329. doi: 10.1063/5.0045416. Epub 2021 Mar 31.

Abstract

Airborne particles are a major route for transmission of COVID-19 and many other infectious diseases. When a person talks, sings, coughs, or sneezes, nasal and throat secretions are spewed into the air. After a short initial fragmentation stage, the expelled material is mostly composed of spherical particles of different sizes. While the dynamics of the largest droplets are dominated by gravitational effects, the smaller aerosol particles, mostly transported by means of hydrodynamic drag, form clouds that can remain afloat for long times. In subsaturated air environments, the dependence of pathogen-laden particle dispersion on their size is complicated due to evaporation of the aqueous fraction. Particle dynamics can significantly change when ambient conditions favor rapid evaporation rates that result in a transition from buoyancy-to-drag dominated dispersion regimes. To investigate the effect of particle size and evaporation on pathogen-laden cloud evolution, a direct numerical simulation of a mild cough was coupled with an evaporative Lagrangian particle advection model. The results suggest that while the dispersion of cough particles in the tails of the size distribution are unlikely to be disrupted by evaporative effects, preferential aerosol diameters (30-40 m) may exhibit significant increases in the residence time and horizontal range under typical ambient conditions. Using estimations of the viral concentration in the spewed fluid and the number of ejected particles in a typical respiratory event, we obtained a map of viral load per volume of air at the end of the cough and the number of virus copies per inhalation in the emitter vicinity.

摘要

空气传播颗粒是新冠病毒以及许多其他传染病传播的主要途径。当一个人说话、唱歌、咳嗽或打喷嚏时,鼻腔和喉咙的分泌物会喷到空气中。在最初短暂的破碎阶段之后,喷出的物质大多由不同大小的球形颗粒组成。虽然最大液滴的动力学主要受重力影响,但较小的气溶胶颗粒大多通过流体动力阻力进行传输,形成可以长时间漂浮的云团。在未饱和的空气环境中,由于含水部分的蒸发,携带病原体的颗粒扩散对其大小的依赖性较为复杂。当环境条件有利于快速蒸发速率时,颗粒动力学可能会显著改变,从而导致从浮力主导的扩散状态转变为阻力主导的扩散状态。为了研究颗粒大小和蒸发对携带病原体的云团演化的影响,将轻度咳嗽的直接数值模拟与蒸发拉格朗日粒子平流模型相结合。结果表明,虽然咳嗽颗粒在大小分布尾部的扩散不太可能因蒸发效应而受到干扰,但在典型环境条件下,优先气溶胶直径(30 - 40微米)的停留时间和水平范围可能会显著增加。利用喷出流体中病毒浓度的估计值以及典型呼吸事件中喷出颗粒的数量,我们得到了咳嗽结束时每单位体积空气中的病毒载量图以及排放源附近每次吸入的病毒拷贝数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a06/8060975/1125d32266e7/PHFLE6-000033-033329_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验