Suppr超能文献

剧烈呼气过程中产生的湍流的直接数值模拟。

Direct numerical simulation of the turbulent flow generated during a violent expiratory event.

作者信息

Fabregat Alexandre, Gisbert Ferran, Vernet Anton, Dutta Som, Mittal Ketan, Pallarès Jordi

机构信息

Department d'Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain.

Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, Utah 84322-4130, USA.

出版信息

Phys Fluids (1994). 2021 Mar 1;33(3):035122. doi: 10.1063/5.0042086. Epub 2021 Mar 8.

Abstract

A main route for SARS-CoV-2 (severe acute respiratory syndrome coronavirus) transmission involves airborne droplets and aerosols generated when a person talks, coughs, or sneezes. The residence time and spatial extent of these virus-laden aerosols are mainly controlled by their size and the ability of the background flow to disperse them. Therefore, a better understanding of the role played by the flow driven by respiratory events is key in estimating the ability of pathogen-laden particles to spread the infection. Here, we numerically investigate the hydrodynamics produced by a violent expiratory event resembling a mild cough. Coughs can be split into an initial jet stage during which air is expelled through mouth and a dissipative phase over which turbulence intensity decays as the puff penetrates the environment. Time-varying exhaled velocity and buoyancy due to temperature differences between the cough and the ambient air affect the overall flow dynamics. The direct numerical simulation (DNS) of an idealized isolated cough is used to characterize the jet/puff dynamics using the trajectory of the leading turbulent vortex ring and extract its topology by fitting an ellipsoid to the exhaled fluid contour. The three-dimensional structure of the simulated cough shows that the assumption of a spheroidal puff front fails to capture the observed ellipsoidal shape. Numerical results suggest that, although analytical models provide reasonable estimates of the distance traveled by the puff, trajectory predictions exhibit larger deviations from the DNS. The fully resolved hydrodynamics presented here can be used to inform new analytical models, leading to improved prediction of cough-induced pathogen-laden aerosol dispersion.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的主要传播途径涉及人说话、咳嗽或打喷嚏时产生的空气飞沫和气溶胶。这些携带病毒的气溶胶的停留时间和空间范围主要由其大小以及背景气流对其的扩散能力控制。因此,更好地理解呼吸事件驱动的气流所起的作用,对于评估携带病原体的颗粒传播感染的能力至关重要。在此,我们对类似轻度咳嗽的剧烈呼气事件产生的流体动力学进行了数值研究。咳嗽可分为初始喷射阶段(在此阶段空气通过口腔排出)和耗散阶段(在此阶段,随着气团穿透环境,湍流强度衰减)。由于咳嗽与周围空气之间的温差导致的随时间变化的呼出速度和浮力会影响整体流动动力学。使用理想化的孤立咳嗽的直接数值模拟(DNS),通过主导湍流涡环的轨迹来表征喷射/气团动力学,并通过将椭球体拟合到呼出流体轮廓来提取其拓扑结构。模拟咳嗽的三维结构表明,球状气团前端的假设无法捕捉到观察到的椭圆形形状。数值结果表明,尽管分析模型对气团传播的距离提供了合理估计,但轨迹预测与DNS相比偏差更大。这里给出的完全解析的流体动力学可用于为新的分析模型提供信息,从而改进对咳嗽引起的携带病原体气溶胶扩散的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa47/7976052/69463a815486/PHFLE6-000033-035122_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验