Suppr超能文献

基于MEMS的可植入压力传感器的非气密微封装技术的长期评估

LONG-TERM EVALUATION OF A NON-HERMETIC MICROPACKAGE TECHNOLOGY FOR MEMS-BASED, IMPLANTABLE PRESSURE SENSORS.

作者信息

Wang P, Majerus S J A, Karam R, Hanzlicek B, Lin D L, Zhu H, Anderson J M, Damaser M S, Zorman C A, Ko W H

机构信息

Electrical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA.

Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.

出版信息

Int Solid State Sens Actuators Microsyst Conf. 2015 Jun;2015:484-487. doi: 10.1109/transducers.2015.7180966. Epub 2015 Aug 6.

Abstract

This paper reports long-term evaluation of a micropackage technology for an implantable MEMS pressure sensor. The all-polymer micropackage survived 160 days when subjected to accelerated lifetime testing at 85 °C in a 1% wt. saline solution. The package shows minimum effect on sensors' sensitivity and nonlinearity, which deviated by less than 5% and 0.3%, respectively. A 6-month evaluation of 16 MEMS-based pressure sensors demonstrated that the proposed micropackage has good biocompatibility and can protect the MEMS pressure sensor. To the best of our knowledge, these results establish new lifetime records for devices packaged using an all-polymer micropackaging approach.

摘要

本文报道了一种用于植入式微机电系统(MEMS)压力传感器的微封装技术的长期评估。当在85°C的1%重量百分比盐溶液中进行加速寿命测试时,全聚合物微封装存活了160天。该封装对传感器的灵敏度和非线性影响最小,分别偏差小于5%和0.3%。对16个基于MEMS的压力传感器进行的为期6个月的评估表明,所提出的微封装具有良好的生物相容性,并且可以保护MEMS压力传感器。据我们所知,这些结果为采用全聚合物微封装方法封装的器件创造了新的寿命记录。

相似文献

1
LONG-TERM EVALUATION OF A NON-HERMETIC MICROPACKAGE TECHNOLOGY FOR MEMS-BASED, IMPLANTABLE PRESSURE SENSORS.
Int Solid State Sens Actuators Microsyst Conf. 2015 Jun;2015:484-487. doi: 10.1109/transducers.2015.7180966. Epub 2015 Aug 6.
2
Parylene-on-oil packaging for long-term implantable pressure sensors.
Biomed Microdevices. 2016 Aug;18(4):66. doi: 10.1007/s10544-016-0089-4.
3
Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices.
J Microelectromech Syst. 2012 Apr 10;21(4):882-896. doi: 10.1109/JMEMS.2012.2190712.
4
5
An Implantable Intravascular Pressure Sensor for a Ventricular Assist Device.
Micromachines (Basel). 2016 Aug 8;7(8):135. doi: 10.3390/mi7080135.
6
Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices.
Micromachines (Basel). 2019 Jul 31;10(8):508. doi: 10.3390/mi10080508.
7
Multi-layered poly-dimethylsiloxane as a non-hermetic packaging material for medical MEMS.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1655-8. doi: 10.1109/EMBC.2012.6346264.
8
A test microchip for evaluation of hermetic packaging technology for biomedical prosthetic implants.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4093-5. doi: 10.1109/IEMBS.2004.1404142.
9
Reliability Evaluation Based on Mathematical Degradation Model for Vacuum Packaged MEMS Sensor.
Micromachines (Basel). 2022 Oct 11;13(10):1713. doi: 10.3390/mi13101713.

引用本文的文献

1
From wires to waves, a novel sensor system for in vivo pressure monitoring.
Sci Rep. 2024 Mar 30;14(1):7570. doi: 10.1038/s41598-024-58019-5.
2
Wireless Implantable Pressure Monitor for Conditional Bladder Neuromodulation.
IEEE Biomed Circuits Syst Conf. 2015 Oct;2015. doi: 10.1109/biocas.2015.7348337. Epub 2015 Dec 7.
3
Wireless Bladder Pressure Monitor for Closed-Loop Bladder Neuromodulation.
Proc IEEE Sens. 2016 Oct-Nov;2016. doi: 10.1109/ICSENS.2016.7808967. Epub 2017 Jan 9.
5
Ultrathin and Robust Micro-Nano Composite Coating for Implantable Pressure Sensor Encapsulation.
ACS Omega. 2020 Sep 2;5(36):23129-23139. doi: 10.1021/acsomega.0c02897. eCollection 2020 Sep 15.
6
Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices.
Micromachines (Basel). 2019 Jul 31;10(8):508. doi: 10.3390/mi10080508.
7
Is submucosal bladder pressure monitoring feasible?
Proc Inst Mech Eng H. 2019 Jan;233(1):100-113. doi: 10.1177/0954411918754925. Epub 2018 Jan 29.
8
Implantable wireless battery recharging system for bladder pressure chronic monitoring.
Lab Chip. 2015 Nov 21;15(22):4338-47. doi: 10.1039/c5lc00821b.

本文引用的文献

1
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
ACM J Emerg Technol Comput Syst. 2012 Jun 1;8(2). doi: 10.1145/2180878.2180883.
2
A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring.
IEEE Trans Biomed Eng. 2013 Jan;60(1):250-6. doi: 10.1109/TBME.2012.2205248. Epub 2012 Jun 19.
3
Micro package of short term wireless implantable microfabricated systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6395-9. doi: 10.1109/IEMBS.2009.5333726.
4
Accelerated aging for testing polymeric biomaterials and medical devices.
Med Eng Phys. 2008 Dec;30(10):1270-4. doi: 10.1016/j.medengphy.2008.06.001. Epub 2008 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验