Suppr超能文献

用于植入式微机电系统设备倒装芯片的封装及非气密封装技术

Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices.

作者信息

Sutanto Jemmy, Anand Sindhu, Sridharan Arati, Korb Robert, Zhou Li, Baker Michael S, Okandan Murat, Muthuswamy Jit

机构信息

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709 USA.

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 USA.

出版信息

J Microelectromech Syst. 2012 Apr 10;21(4):882-896. doi: 10.1109/JMEMS.2012.2190712.

Abstract

We report here a successful demonstration of a flip-chip packaging approach for a microelectromechanical systems (MEMS) device with in-plane movable microelectrodes implanted in a rodent brain. The flip-chip processes were carried out using a custom-made apparatus that was capable of the following: 1) creating Ag epoxy microbumps for first-level interconnect; 2) aligning the die and the glass substrate; and 3) creating non-hermetic encapsulation (NHE). The completed flip-chip package had an assembled weight of only 0.5 g significantly less than the previously designed wire-bonded package of 4.5 g. The resistance of the Ag bumps was found to be negligible. The MEMS micro-electrodes were successfully tested for its mechanical movement with microactuators generating forces of 450 N with a displacement resolution of 8.8 m/step. An NHE on the front edge of the package was created by patterns of hydrophobic silicone microstructures to prevent contamination from cerebrospinal fluid while simultaneously allowing the microelectrodes to move in and out of the package boundary. The breakdown pressure of the NHE was found to be 80 cm of water, which is significantly (4.5-11 times) larger than normal human intracranial pressures. Bench top tests and tests of the MEMS flip-chip packages for up to 75 days showed reliable NHE for potential long-term implantation.

摘要

我们在此报告了一种用于微机电系统(MEMS)设备的倒装芯片封装方法的成功演示,该设备带有植入啮齿动物大脑中的平面内可移动微电极。倒装芯片工艺是使用一种定制设备进行的,该设备能够:1)创建用于一级互连的银环氧树脂微凸点;2)对准芯片和玻璃基板;3)创建非气密封装(NHE)。完成的倒装芯片封装的组装重量仅为0.5克,明显低于先前设计的4.5克的引线键合封装。发现银凸点的电阻可忽略不计。利用微致动器成功测试了MEMS微电极的机械运动,微致动器产生450 N的力,位移分辨率为8.8μm/步。通过疏水性硅微结构图案在封装的前沿创建了一个非气密封装,以防止脑脊液污染,同时允许微电极进出封装边界。发现非气密封装的破裂压力为80 cm水柱,这明显(4.5至11倍)高于正常人体颅内压。台式测试以及对MEMS倒装芯片封装长达75天的测试表明,该非气密封装对于潜在的长期植入具有可靠性。

相似文献

6
LONG-TERM EVALUATION OF A NON-HERMETIC MICROPACKAGE TECHNOLOGY FOR MEMS-BASED, IMPLANTABLE PRESSURE SENSORS.基于MEMS的可植入压力传感器的非气密微封装技术的长期评估
Int Solid State Sens Actuators Microsyst Conf. 2015 Jun;2015:484-487. doi: 10.1109/transducers.2015.7180966. Epub 2015 Aug 6.

本文引用的文献

2
Volitional control of single cortical neurons in a brain-machine interface.脑机接口中单个皮层神经元的自主控制。
J Neural Eng. 2011 Apr;8(2):025017. doi: 10.1088/1741-2560/8/2/025017. Epub 2011 Mar 24.
6
Direct control of paralysed muscles by cortical neurons.皮质神经元对麻痹肌肉的直接控制。
Nature. 2008 Dec 4;456(7222):639-42. doi: 10.1038/nature07418. Epub 2008 Oct 15.
8
Monitoring the injured brain: ICP and CBF.监测受伤的大脑:颅内压与脑血流量。
Br J Anaesth. 2006 Jul;97(1):26-38. doi: 10.1093/bja/ael110. Epub 2006 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验