Suppr超能文献

人工智能驱动的锥形束计算机断层扫描引导的盆腔区域在线自适应放射治疗的临床应用。

Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region.

作者信息

Sibolt Patrik, Andersson Lina M, Calmels Lucie, Sjöström David, Bjelkengren Ulf, Geertsen Poul, Behrens Claus F

机构信息

Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark.

出版信息

Phys Imaging Radiat Oncol. 2020 Dec 18;17:1-7. doi: 10.1016/j.phro.2020.12.004. eCollection 2021 Jan.

Abstract

BACKGROUND AND PURPOSE

Studies have demonstrated the potential of online adaptive radiotherapy (oART). However, routine use has been limited due to resource demanding solutions. This study reports on experiences with oART in the pelvic region using a novel cone-beam computed tomography (CBCT)-based, artificial intelligence (AI)-driven solution.

MATERIAL AND METHODS

Automated pre-treatment planning for thirty-nine pelvic cases (bladder, rectum, anal, and prostate), and one hundred oART simulations were conducted in a pre-clinical release of Ethos (Varian Medical Systems, Palo Alto, CA). Plan quality, AI-segmentation accuracy, oART feasibility and an integrated calculation-based quality assurance solution were evaluated. Experiences from the first five clinical oART patients (three bladder, one rectum and one sarcoma) are reported.

RESULTS

Auto-generated pre-treatment plans demonstrated similar planning target volume (PTV) coverage and organs at risk doses, compared to institution reference. More than 75% of AI-segmentations during simulated oART required none or minor editing and the adapted plan was superior in 88% of cases. Limitations in AI-segmentation correlated to cases where AI model training was lacking. The five first treated patients complied well with the median adaptive procedure duration of 17.6 min (from CBCT acceptance to treatment delivery start). The treated bladder patients demonstrated a 42% median primary PTV reduction, indicating a 24%-30% reduction in V to the bowel cavity, compared to non-ART.

CONCLUSIONS

A novel commercial oART solution was demonstrated feasible for various pelvic sites. Clinically acceptable AI-segmentation and auto-planning enabled adaptation within reasonable timeslots. Possibilities for reduced PTVs observed for bladder cancer indicated potential for toxicity reductions.

摘要

背景与目的

研究已证明在线自适应放疗(oART)的潜力。然而,由于资源需求大的解决方案,其常规应用受到限制。本研究报告了使用基于新型锥形束计算机断层扫描(CBCT)的人工智能(AI)驱动解决方案在盆腔区域进行oART的经验。

材料与方法

在Ethos(瓦里安医疗系统公司,加利福尼亚州帕洛阿尔托)的临床前版本中,对39例盆腔病例(膀胱、直肠、肛门和前列腺)进行了自动预处理计划,并进行了100次oART模拟。评估了计划质量、AI分割准确性、oART可行性以及基于综合计算的质量保证解决方案。报告了前五例临床oART患者(三例膀胱、一例直肠和一例肉瘤)的经验。

结果

与机构参考相比,自动生成的预处理计划显示出相似的计划靶区(PTV)覆盖范围和危及器官剂量。在模拟oART期间,超过75%的AI分割无需或只需少量编辑,并且在88%的病例中,调整后的计划更优。AI分割的局限性与缺乏AI模型训练的病例相关。前五例接受治疗的患者很好地遵守了17.6分钟的中位自适应程序持续时间(从CBCT接受至开始治疗)。接受治疗的膀胱患者的原发性PTV中位数降低了42%,表明与非ART相比,肠腔V降低了24%-30%。

结论

一种新型的商用oART解决方案被证明对各种盆腔部位可行。临床上可接受的AI分割和自动计划能够在合理的时间范围内实现自适应。观察到膀胱癌PTV降低的可能性表明有降低毒性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54bb/8057957/4c4dcde68a10/gr1.jpg

相似文献

1
Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region.
Phys Imaging Radiat Oncol. 2020 Dec 18;17:1-7. doi: 10.1016/j.phro.2020.12.004. eCollection 2021 Jan.
2
Implementing cone-beam computed tomography-guided online adaptive radiotherapy in cervical cancer.
Clin Transl Radiat Oncol. 2023 Feb 14;40:100596. doi: 10.1016/j.ctro.2023.100596. eCollection 2023 May.
4
Online adaptive radiotherapy of anal cancer: Normal tissue sparing, target propagation methods, and first clinical experience.
Radiother Oncol. 2022 Nov;176:92-98. doi: 10.1016/j.radonc.2022.09.015. Epub 2022 Sep 27.
8
CT-guided online adaptive stereotactic body radiotherapy for pancreas ductal adenocarcinoma: Dosimetric and initial clinical experience.
Clin Transl Radiat Oncol. 2024 Jul 7;48:100813. doi: 10.1016/j.ctro.2024.100813. eCollection 2024 Sep.
9
Intrafraction Motion and Margin Assessment for Ethos Online Adaptive Radiotherapy Treatments of the Prostate and Seminal Vesicles.
Adv Radiat Oncol. 2023 Nov 4;9(3):101405. doi: 10.1016/j.adro.2023.101405. eCollection 2024 Mar.

引用本文的文献

1
Optimizing Workflow for Cone Beam Computed Tomography-Based Online Adaptive Radiation Therapy Toward Reduced Physician Involvement.
Adv Radiat Oncol. 2025 Jul 25;10(10):101874. doi: 10.1016/j.adro.2025.101874. eCollection 2025 Oct.
2
Longitudinal evaluation of workflow optimization in radiotherapy: A 4-year retrospective study.
J Appl Clin Med Phys. 2025 Sep;26(9):e70252. doi: 10.1002/acm2.70252.
3
Simulation-free cone beam CT-based online adaptive radiotherapy for metastatic spinal cord compression.
Acta Oncol. 2025 Aug 25;64:1095-1101. doi: 10.2340/1651-226X.2025.44040.
6
Optimizing Treatment Precision: Role of Adaptive Radiotherapy in Modern Anal Cancer Management.
Cancers (Basel). 2025 Jul 26;17(15):2478. doi: 10.3390/cancers17152478.
8
Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review.
Ewha Med J. 2024 Oct;47(4):e49. doi: 10.12771/emj.2024.e49. Epub 2024 Oct 31.
9
Dosimetric evaluation of cone beam computed tomography-guided online adaptive radiotherapy in gastric mucosa-associated lymphoid tissue lymphoma.
Tech Innov Patient Support Radiat Oncol. 2025 Jun 25;35:100321. doi: 10.1016/j.tipsro.2025.100321. eCollection 2025 Sep.
10
Intra-adaptational changes in online adaptive radiotherapy: from the ideal to the real dose.
Strahlenther Onkol. 2025 Jul 15. doi: 10.1007/s00066-025-02425-9.

本文引用的文献

1
Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer.
Phys Imaging Radiat Oncol. 2019 Mar 6;9:69-76. doi: 10.1016/j.phro.2019.02.002. eCollection 2019 Jan.
3
Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy.
Med Phys. 2020 Aug;47(8):3415-3422. doi: 10.1002/mp.14196. Epub 2020 May 11.
4
CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy.
Med Phys. 2020 Jun;47(6):2472-2483. doi: 10.1002/mp.14121. Epub 2020 Mar 28.
5
Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks.
Radiother Oncol. 2020 Apr;145:193-200. doi: 10.1016/j.radonc.2020.01.021. Epub 2020 Feb 8.
6
Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI.
Phys Med Biol. 2020 Feb 4;65(3):035013. doi: 10.1088/1361-6560/ab63bb.
7
First clinical experiences with a high field 1.5 T MR linac.
Acta Oncol. 2019 Oct;58(10):1352-1357. doi: 10.1080/0284186X.2019.1627417. Epub 2019 Jun 26.
8
Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy.
Semin Radiat Oncol. 2019 Jul;29(3):219-227. doi: 10.1016/j.semradonc.2019.02.004.
9
Adaptive Radiotherapy: Moving Into the Future.
Semin Radiat Oncol. 2019 Jul;29(3):181-184. doi: 10.1016/j.semradonc.2019.02.011.
10
Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for Ultracentral Thorax Malignancies: Results of a Phase 1 Trial.
Adv Radiat Oncol. 2018 Oct 18;4(1):201-209. doi: 10.1016/j.adro.2018.10.003. eCollection 2019 Jan-Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验