Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, USA.
Department of Chemoradiotherapy, Tangshan People's Hospital, PR China.
Radiother Oncol. 2020 Apr;145:193-200. doi: 10.1016/j.radonc.2020.01.021. Epub 2020 Feb 8.
The recently introduced MR-Linac enables MRI-guided Online Adaptive Radiation Therapy (MRgOART) of pancreatic cancer, for which fast and accurate segmentation of the gross tumor volume (GTV) is essential. This work aims to develop an algorithm allowing automatic segmentation of the pancreatic GTV based on multi-parametric MRI using deep neural networks.
We employed a square-window based convolutional neural network (CNN) architecture with three convolutional layer blocks. The model was trained using about 245,000 normal and 230,000 tumor patches extracted from 37 DCE MRI sets acquired in 27 patients with data augmentation. These images were bias corrected, intensity standardized, and resampled to a fixed voxel size of 1 × 1 × 3 mm. The trained model was tested on 19 DCE MRI sets from another 13 patients, and the model-generated GTVs were compared with the manually segmented GTVs by experienced radiologist and radiation oncologists based on Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and Mean Surface Distance (MSD).
The mean values and standard deviations of the performance metrics on the test set were DSC = 0.73 ± 0.09, HD = 8.11 ± 4.09 mm, and MSD = 1.82 ± 0.84 mm. The interobserver variations were estimated to be DSC = 0.71 ± 0.08, HD = 7.36 ± 2.72 mm, and MSD = 1.78 ± 0.66 mm, which had no significant difference with model performance at p values of 0.6, 0.52, and 0.88, respectively.
We developed a CNN-based model for auto-segmentation of pancreatic GTV in multi-parametric MRI. Model performance was comparable to expert radiation oncologists. This model provides a framework to incorporate multimodality images and daily MRI for GTV auto-segmentation in MRgOART.
最近推出的 MR-Linac 能够实现胰腺癌的 MRI 引导在线自适应放疗(MRgOART),为此需要快速准确地对大体肿瘤体积(GTV)进行分割。本研究旨在开发一种基于多参数 MRI 的深度学习神经网络自动分割胰腺 GTV 的算法。
我们采用了基于正方形窗口的卷积神经网络(CNN)架构,其中包含三个卷积层模块。该模型使用约 245000 个正常和 230000 个肿瘤斑块进行训练,这些斑块是从 27 名患者的 37 个 DCE MRI 集中提取的,并进行了数据扩充。这些图像经过偏置校正、强度标准化,并重新采样到固定的体素大小为 1×1×3mm。在另外 13 名患者的 19 个 DCE MRI 集中测试了训练好的模型,由经验丰富的放射科医生和放射肿瘤学家根据 Dice 相似系数(DSC)、Hausdorff 距离(HD)和平均表面距离(MSD)比较模型生成的 GTV 和手动分割的 GTV。
在测试集上,性能指标的平均值和标准差分别为 DSC=0.73±0.09、HD=8.11±4.09mm 和 MSD=1.82±0.84mm。估计观察者间的变异度分别为 DSC=0.71±0.08、HD=7.36±2.72mm 和 MSD=1.78±0.66mm,与模型性能相比 p 值分别为 0.6、0.52 和 0.88,无显著差异。
我们开发了一种基于 CNN 的模型,用于多参数 MRI 中胰腺 GTV 的自动分割。模型性能与专家放射肿瘤学家相当。该模型为在 MRgOART 中结合多模态图像和日常 MRI 进行 GTV 自动分割提供了一个框架。