Suppr超能文献

变形链球菌中乳糖分解代谢的调控:磷酸-β-半乳糖苷酶的纯化及调控特性

Regulation of lactose catabolism in Streptococcus mutans: purification and regulatory properties of phospho-beta-galactosidase.

作者信息

Calmes R, Brown A T

出版信息

Infect Immun. 1979 Jan;23(1):68-79. doi: 10.1128/iai.23.1.68-79.1979.

Abstract

Phospho-beta-galactosidase (P-beta-gal), the enzyme which catalyzes the first step in the metabolism of intracellular lactose phosphate, occurred at high specific activity in the cytoplasm in 12 of 13 strains of streptococcus mutans grown on lactose but not other carbon sources. The P-beta-gal from S. mutans SL1 was purified 13-fold using diethylaminoethyl-cellulose ion exchange and agarose A--0.5 M molecular exclusion column chromatography. The molecualr weight of the enzyme was estimated to be 40,000, and its pH optimum was 6.5 in three different buffer systems. P-beta-gal activity was inhibited by Co2+, Zn2+, and Cu2+, but other cations, ethylenediaminetetraacetic acid, orthophosphate, and fluoride had no effect upon enzyme activity. The kinetic response of P-beta-gal to a model substrate, o-nitrophenyl-beta-D-galactopyranoside-6-phosphate, obeyed Michaelis-Menten kinetics, and the Km for this substrate was 0.19 mM. In addition to being under genetic control, P-beta-gal activity was regulated by a number of biologically active metabolites. Enzyme activity was inhibited in a sigmoidal fashion by phosphoenolpyruvate. The M 0.5 V value for phosphoenolpyruvate was 2.8 mM, and the Hill coefficient (n) was 3. In addition, P-beta-gal exhibited strong inhibition by ATP, galactose-6-phosphate, and glucose-6-phosphate. In contrast to inhibition of P-beta-gal activity by phosphoenolpyruvate, the inhibition exerted by ATP, galactose-6-phosphate, and glucose-6-phosphate obeyed classical Michaelis-Menten kinetics; the Ki values for these inhibitors were 0.55, 1.6, and 4.0 mM, respectively.

摘要

磷酸β-半乳糖苷酶(P-β-半乳糖苷酶)是催化细胞内乳糖磷酸代谢第一步的酶,在以乳糖而非其他碳源生长的13株变形链球菌中的12株的细胞质中,该酶具有高比活性。使用二乙氨基乙基纤维素离子交换和琼脂糖A - 0.5M分子排阻柱色谱法,将变形链球菌SL1的P-β-半乳糖苷酶纯化了13倍。该酶的分子量估计为40,000,在三种不同的缓冲系统中其最适pH为6.5。P-β-半乳糖苷酶活性受到Co2 +、Zn2 +和Cu2 +的抑制,但其他阳离子、乙二胺四乙酸、正磷酸盐和氟化物对酶活性没有影响。P-β-半乳糖苷酶对模型底物6-磷酸邻硝基苯基-β-D-吡喃半乳糖苷的动力学响应符合米氏动力学,该底物的Km为0.19mM。除了受遗传控制外,P-β-半乳糖苷酶活性还受到多种生物活性代谢物的调节。磷酸烯醇丙酮酸以S形方式抑制酶活性。磷酸烯醇丙酮酸的M 0.5 V值为2.8mM,希尔系数(n)为3。此外,P-β-半乳糖苷酶受到ATP、6-磷酸半乳糖和6-磷酸葡萄糖的强烈抑制。与磷酸烯醇丙酮酸对P-β-半乳糖苷酶活性的抑制相反,ATP、6-磷酸半乳糖和6-磷酸葡萄糖所施加的抑制符合经典的米氏动力学;这些抑制剂的Ki值分别为0.55、1.6和4.0mM。

相似文献

3
Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.
J Bacteriol. 1979 Dec;140(3):1102-4. doi: 10.1128/jb.140.3.1102-1104.1979.
4
Lactose metabolism involving phospho-beta-galactosidase in Klebsiella.
J Bacteriol. 1979 Jun;138(3):691-8. doi: 10.1128/jb.138.3.691-698.1979.
7
Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
J Bacteriol. 1974 Sep;119(3):830-9. doi: 10.1128/jb.119.3.830-839.1974.
8
Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus.
Appl Microbiol Biotechnol. 2010 Feb;85(5):1427-35. doi: 10.1007/s00253-009-2165-7. Epub 2009 Aug 7.
9
Purification and characterization of beta-galactosidase from a strain of Bacillus coagulans.
Antonie Van Leeuwenhoek. 1981 Mar;47(1):53-64. doi: 10.1007/BF00399066.
10
A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose.
Appl Microbiol Biotechnol. 2020 Jul;104(14):6161-6172. doi: 10.1007/s00253-020-10679-9. Epub 2020 May 21.

引用本文的文献

6
Uptake and metabolism of sucrose by Streptococcus lactis.
J Bacteriol. 1981 Aug;147(2):543-51. doi: 10.1128/jb.147.2.543-551.1981.
7
Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.
J Bacteriol. 1979 Dec;140(3):1102-4. doi: 10.1128/jb.140.3.1102-1104.1979.
8
Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
J Bacteriol. 1979 Dec;140(3):774-85. doi: 10.1128/jb.140.3.774-785.1979.

本文引用的文献

1
Regulation of lactose fermentation in group N streptococci.
Appl Environ Microbiol. 1976 Oct;32(4):474-8. doi: 10.1128/aem.32.4.474-478.1976.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS.
Ann N Y Acad Sci. 1964 Dec 28;121:404-27. doi: 10.1111/j.1749-6632.1964.tb14213.x.
4
The determination of enzyme inhibitor constants.
Biochem J. 1953 Aug;55(1):170-1. doi: 10.1042/bj0550170.
6
Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci.
J Bacteriol. 1969 Aug;99(2):603-10. doi: 10.1128/jb.99.2.603-610.1969.
7
Metabolism of lactose by Staphylococcus aureus and its genetic basis.
J Bacteriol. 1968 Jun;95(6):2270-4. doi: 10.1128/jb.95.6.2270-2274.1968.
8
Purification of the staphylococcal 6-phospho-beta-D-- galactosidase.
Eur J Biochem. 1970 May 1;14(1):27-32. doi: 10.1111/j.1432-1033.1970.tb00256.x.
9
Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
J Bacteriol. 1970 Jun;102(3):804-9. doi: 10.1128/jb.102.3.804-809.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验