Suppr超能文献

精神病理学的意义相空间模型:计算机模拟建模研究。

The phase space of meaning model of psychopathology: A computer simulation modelling study.

机构信息

Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padua, Padua, Italy.

Department of General Psychology, University of Padova, Padua, Italy.

出版信息

PLoS One. 2021 Apr 26;16(4):e0249320. doi: 10.1371/journal.pone.0249320. eCollection 2021.

Abstract

INTRODUCTION

The hypothesis of a general psychopathology factor that underpins all common forms of mental disorders has been gaining momentum in contemporary clinical research and is known as the p factor hypothesis. Recently, a semiotic, embodied, and psychoanalytic conceptualisation of the p factor has been proposed called the Harmonium Model, which provides a computational account of such a construct. This research tested the core tenet of the Harmonium model, which is the idea that psychopathology can be conceptualised as due to poorly-modulable cognitive processes, and modelled the concept of Phase Space of Meaning (PSM) at the computational level.

METHOD

Two studies were performed, both based on a simulation design implementing a deep learning model, simulating a cognitive process: a classification task. The level of performance of the task was considered the simulated equivalent to the normality-psychopathology continuum, the dimensionality of the neural network's internal computational dynamics being the simulated equivalent of the PSM's dimensionality.

RESULTS

The neural networks' level of performance was shown to be associated with the characteristics of the internal computational dynamics, assumed to be the simulated equivalent of poorly-modulable cognitive processes.

DISCUSSION

Findings supported the hypothesis. They showed that the neural network's low performance was a matter of the combination of predicted characteristics of the neural networks' internal computational dynamics. Implications, limitations, and further research directions are discussed.

摘要

简介

支撑所有常见精神障碍形式的一般精神病理学因素的假设在当代临床研究中越来越受到重视,被称为 p 因素假设。最近,有人提出了一种符号学、具身和精神分析的 p 因素概念化,称为和谐模型,它为这样的结构提供了一种计算解释。本研究检验了和谐模型的核心原则,即精神病理学可以被概念化为由于认知过程调节不良,并且在计算水平上对意义相空间(PSM)的概念进行了建模。

方法

进行了两项研究,均基于模拟设计,实现了深度学习模型,模拟认知过程:分类任务。任务的性能水平被认为是正常-精神病理学连续体的模拟等价物,神经网络内部计算动力学的维度被认为是 PSM 的维度的模拟等价物。

结果

神经网络的性能水平与内部计算动力学的特征相关,这些特征被认为是认知过程调节不良的模拟等价物。

讨论

研究结果支持了假设。它们表明,神经网络的低性能是由神经网络内部计算动力学的预测特征的组合造成的。讨论了其影响、局限性和进一步的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eba/8075201/2b21eaaad7ab/pone.0249320.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验