Suppr超能文献

卒中后认知障碍的策略性梗死部位:12 项急性缺血性卒中队列个体患者数据的汇总分析。

Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts.

机构信息

Department of Neurology and Neurosurgery, University Medical Centre (UMC) Utrecht Brain Center, Utrecht, Netherlands.

Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands.

出版信息

Lancet Neurol. 2021 Jun;20(6):448-459. doi: 10.1016/S1474-4422(21)00060-0. Epub 2021 Apr 23.

Abstract

BACKGROUND

Post-stroke cognitive impairment (PSCI) occurs in approximately half of people in the first year after stroke. Infarct location is a potential determinant of PSCI, but a comprehensive map of strategic infarct locations predictive of PSCI is unavailable. We aimed to identify infarct locations most strongly predictive of PSCI after acute ischaemic stroke and use this information to develop a prediction model.

METHODS

In this large-scale multicohort lesion-symptom mapping study, we pooled and harmonised individual patient data from 12 cohorts through the Meta-analyses on Strategic Lesion Locations for Vascular Cognitive Impairment using Lesion-Symptom Mapping (Meta VCI Map) consortium. The identified cohorts (as of Jan 1, 2019) comprised patients with acute symptomatic infarcts on CT or MRI (with available infarct segmentations) and a cognitive assessment up to 15 months after acute ischaemic stroke onset. PSCI was defined as performance lower than the fifth percentile of local normative data, on at least one cognitive domain on a multidomain neuropsychological assessment or on the Montreal Cognitive Assessment. Voxel-based lesion-symptom mapping (VLSM) was used to calculate voxel-wise odds ratios (ORs) for PSCI that were mapped onto a three-dimensional brain template to visualise PSCI risk per location. For the prediction model of PSCI risk, a location impact score on a 5-point scale was derived from the VLSM results on the basis of the mean voxel-wise coefficient (ln[OR]) within each patient's infarct. We did combined internal-external validation by leave-one-cohort-out cross-validation for all 12 cohorts using logistic regression. Predictive performance of a univariable model with only the location impact score was compared with a multivariable model with addition of other clinical PSCI predictors (age, sex, education, time interval between stroke onset and cognitive assessment, history of stroke, and total infarct volume). Testing of visual ratings was done by three clinicians, and accuracy, inter-rater reliability, and intra-rater reliability were assessed with Cohen's weighted kappa.

FINDINGS

In our sample of 2950 patients (mean age 66·8 years [SD 11·6]; 1157 [39·2%] women), 1286 (43·6%) had PSCI. We achieved high lesion coverage of the brain in our analyses (86·9%). Infarcts in the left frontotemporal lobes, left thalamus, and right parietal lobe were strongly associated with PSCI (after false discovery rate correction, q<0·01; voxel-wise ORs >20). On cross-validation, the location impact score showed good correspondence, based on visual assessment of goodness of fit, between predicted and observed risk of PSCI across cohorts after adjusting for cohort-specific PSCI occurrence. Cross-validations showed that the location impact score by itself had similar performance to the combined model with other PSCI predictors, while allowing for easy visual assessment. Therefore the univariable model with only the location impact score was selected as the final model. Correspondence between visual ratings and actual location impact score (Cohen's weighted kappa: range 0·88-0·92), inter-rater agreement (0·85-0·87), and intra-rater agreement (for a single rater, 0·95) were all high.

INTERPRETATION

To the best of our knowledge, this study provides the first comprehensive map of strategic infarct locations associated with risk of PSCI. A location impact score was derived from this map that robustly predicted PSCI across cohorts. Furthermore, we developed a quick and reliable visual rating scale that might in the future be applied by clinicians to identify individual patients at risk of PSCI.

FUNDING

The Netherlands Organisation for Health Research and Development.

摘要

背景

约有一半的脑卒中患者在脑卒中后第一年出现认知障碍。梗死部位是 PSCI 的潜在决定因素,但缺乏预测 PSCI 的全面战略梗死部位图谱。我们旨在确定与急性缺血性脑卒中后 PSCI 相关性最强的梗死部位,并利用这些信息开发一个预测模型。

方法

在这项大规模多队列病变-症状映射研究中,我们通过 Meta VCI Map 联盟汇集并协调了 12 个队列的个体患者数据。截至 2019 年 1 月 1 日,纳入的队列包括 CT 或 MRI 上有急性症状性梗死(有可用的梗死节段)且在急性缺血性脑卒中发病后 15 个月内进行认知评估的患者。PSCI 的定义为在多领域神经心理学评估中的至少一个认知域或蒙特利尔认知评估中表现低于当地正常数据的第 5 个百分位数。基于体素的病变-症状映射(VLSM)用于计算 PSCI 的体素比值比(OR),并将其映射到三维脑模板上,以显示每个部位的 PSCI 风险。对于 PSCI 风险的预测模型,基于每个患者梗死区内的平均体素比值比(ln[OR]),从 VLSM 结果中得出 5 分制的部位影响评分。我们对所有 12 个队列进行了基于逻辑回归的单队列外交叉验证的联合内部和外部验证。通过比较仅具有部位影响评分的单变量模型和添加其他临床 PSCI 预测因子(年龄、性别、教育、脑卒中发病与认知评估之间的时间间隔、脑卒中史和总梗死体积)的多变量模型,评估了预测性能。三位临床医生对视觉评分进行了测试,并使用 Cohen 的加权 Kappa 评估了准确性、组内可靠性和组内可靠性。

发现

在我们的 2950 名患者样本中(平均年龄 66.8 岁[标准差 11.6];1157[39.2%]为女性),1286 名(43.6%)患有 PSCI。我们在分析中实现了大脑的高病变覆盖率(86.9%)。左侧额颞叶、左侧丘脑和右侧顶叶的梗死与 PSCI 密切相关(经假发现率校正,q<0.01;体素比值比>20)。在交叉验证中,基于对跨队列 PSCI 发生的拟合优度的视觉评估,在调整队列特异性 PSCI 发生率后,位置影响评分在预测和观察到的 PSCI 风险之间表现出良好的一致性。交叉验证表明,位置影响评分本身与其他 PSCI 预测因子的组合模型具有相似的性能,同时允许进行简单的视觉评估。因此,选择了仅具有位置影响评分的单变量模型作为最终模型。视觉评分与实际位置影响评分之间的一致性(Cohen 的加权 Kappa:范围 0.88-0.92)、组内一致性(0.85-0.87)和组内一致性(对于单个评估者,0.95)均很高。

解释

据我们所知,这项研究提供了第一个与 PSCI 风险相关的战略梗死部位的全面图谱。从该图谱中得出了一个部位影响评分,可在跨队列中稳健地预测 PSCI。此外,我们开发了一种快速可靠的视觉评分量表,将来可能由临床医生用于识别有 PSCI 风险的个体患者。

资金

荷兰健康研究与发展组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验